
Oracle WebLogic
Server 12c
Administration I
Exam 1Z0-133

A Comprehensive Certification Guide
—
Gustavo Garnica

www.allitebooks.com

http://www.allitebooks.org

Oracle WebLogic
Server 12c Administration

I Exam 1Z0-133
A Comprehensive Certification Guide

Gustavo Garnica

www.allitebooks.com

http://www.allitebooks.org

Oracle WebLogic Server 12c Administration I Exam 1Z0-133: A Comprehensive
Certification Guide

ISBN-13 (pbk): 978-1-4842-2561-5			 ISBN-13 (electronic): 978-1-4842-2562-2
https://doi.org/10.1007/978-1-4842-2562-2

Library of Congress Control Number: 2017962906

Copyright © 2018 by Gustavo Garnica

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Technical Reviewer: Julian Ortiz Iregui
Coordinating Editor: Rita Fernando
Copy Editor: Karen Jameson

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484225615. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Gustavo Garnica
San Jose, California, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2562-2
http://www.allitebooks.org

To my sweet wife Lety . . .
I love you, thank you for our awesome family.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Foreword���xxi

Introduction���xxiii

Table of Contents

Chapter 1: �Overview�� 1

For New Administrators��� 2

Enterprise Applications��� 2

Java Application Servers�� 3

Java EE Services�� 4

Oracle Fusion Middleware�� 6

Oracle WebLogic Server��� 7

New Features in WebLogic Server 12c�� 8

Updates Required by Java EE 6�� 8

Other Functionality Changes and Additions�� 9

Conclusion�� 10

Recommended Exercises��� 10

Certification Questions��� 11

Coming Up�� 12

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: �Installation and Updates�� 13

Supported Configurations�� 14

Fusion Middleware Infrastructure�� 16

Product Requirements��� 17

CPU and Memory Requirements��� 17

Disk Space�� 18

Networking��� 18

Java SE��� 18

Installation Overview��� 19

Installation Methods��� 22

Installation Structure��� 23

Updating and Patching��� 23

De-installation�� 24

Recommended Exercises��� 25

Certification Questions��� 25

Coming Up�� 26

Chapter 3: �Domains��� 27

Definition�� 27

Domain Components�� 28

Product Installation and Domains��� 29

Domain Topology�� 29

Domain Structure��� 31

Configuration Repository�� 32

Configuration Methods��� 33

Domain Templates�� 34

Planning Domain Configuration�� 35

Configuration Flow��� 35

Domain Propagation��� 37

Pack Command�� 38

Unpack Command�� 38

Propagation Process��� 39

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

Recommended Exercises��� 40

Certification Questions��� 40

Coming Up�� 41

Chapter 4: �Node Manager�� 43

Overview�� 43

Node Manager Interactions�� 44

Configuration��� 47

Automatic Configuration��� 48

Manual Configuration��� 49

Structure and Properties�� 50

Configuration Files�� 50

Log Files��� 51

File Locations��� 51

Properties��� 52

SSL Configuration��� 55

Operation��� 56

Start the Administration Server�� 57

Start Managed Servers��� 58

Automatic JVM Restart��� 58

Crash Recovery�� 58

Recommended Exercises��� 59

Certification Questions��� 59

Coming Up�� 60

Chapter 5: �Servers��� 61

Standard Startup�� 61

Available Methods�� 62

Standard Scripts��� 63

The startWebLogic Script��� 65

The setDomainEnv Script��� 65

The commEnv Script�� 65

Resuming Execution of setDomainEnv��� 66

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

viii

The setStartupEnv Script�� 66

The setUserOverrides Script��� 66

Completing Execution of setDomainEnv��� 67

Completing Execution of startWebLogic��� 67

Path, Classpath, and System Properties�� 68

Sample Configuration Values�� 69

Sample PATH Value��� 69

Sample CLASSPATH Value�� 70

How the CLASSPATH Is Built��� 71

Sample System Properties��� 72

Additional System Properties��� 73

Manual Startup�� 74

Server Instance Selection��� 75

Running the Command��� 75

Credentials��� 76

Recommended Exercises��� 76

Certification Questions��� 77

Coming Up�� 78

Chapter 6: �Configuration Management�� 79

Java Management Extensions��� 80

Architecture��� 80

Configuration Management�� 81

Administration Console�� 83

Security�� 84

GUI Layout�� 85

Configuration Management Using the Administration Console�� 87

WebLogic Scripting Tool��� 88

Security�� 89

Executing Commands��� 91

WLST Commands��� 92

Configuration Management Using WLST�� 95

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

Recommended Exercises��� 98

Certification Questions��� 98

Coming Up�� 99

Chapter 7: �Logging and Monitoring��� 101

Logging�� 101

Loggers and Handlers�� 103

Message Severity��� 104

Message Attributes��� 105

Available Log Files�� 106

Viewing Log Files��� 108

Configure Logging�� 111

Logging Filters�� 112

Monitoring�� 113

Server Health�� 115

Monitoring Dashboard�� 116

Recommended Exercises��� 117

Certification Questions��� 118

Coming Up�� 118

Chapter 8: �Networking��� 119

Network Channels�� 119

Purpose�� 120

Configuration�� 121

Channel Types�� 123

Administration Port��� 123

Sample Use�� 125

Virtual Hosts��� 126

Recommended Exercises��� 127

Certification Questions��� 128

Coming Up�� 129

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

x

Chapter 9: �Clusters - Basics�� 131

High Availability�� 131

Tiered Architectures��� 132

Cluster Architecture��� 134

Cluster Creation��� 136

Using the Administration Console�� 138

Using WebLogic Scripting Tool�� 139

Dynamic Clusters��� 142

Server Templates�� 142

Recommended Exercises��� 145

Certification Questions��� 145

Coming Up�� 146

Chapter 10: �Clusters - Advanced��� 147

Enabling Technologies��� 147

TCP/IP��� 147

IP�� 148

TCP��� 148

Sockets��� 149

UDP��� 149

Multicast��� 150

Unicast�� 150

Application Layer�� 150

Cluster Communication�� 151

Health Status�� 151

JNDI Replication��� 152

Selecting Protocols��� 152

Choosing Multicast��� 153

Choosing Unicast�� 155

Replication Channels�� 158

Monitoring Clusters�� 158

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

xi

Recommended Exercises��� 160

Certification Questions��� 160

Coming Up�� 161

Chapter 11: �Clusters - Proxies��� 163

HTTP Sessions��� 163

Session Replication�� 164

Replication Groups��� 164

In-Memory Replication��� 165

Session Persistence��� 166

JDBC Persistence��� 168

File Persistence�� 169

Session Cache�� 170

Proxies��� 170

Hardware Proxies��� 171

Software Proxies�� 171

Deployment Architectures�� 177

Session Failover��� 179

Recommended Exercises��� 181

Certification Questions��� 181

Coming Up�� 182

Chapter 12: �JDBC��� 183

Architecture��� 184

Data Sources�� 185

Configuration�� 187

Transactionality�� 190

Monitoring and Control��� 191

Debugging�� 192

Multi Data Sources��� 193

Active GridLink��� 195

Recommended Exercises��� 196

Table of Contents

xii

Certification Questions��� 196

Coming Up�� 197

Chapter 13: �Transactions��� 199

Properties��� 200

Extended Architecture�� 200

Two-Phase Commit�� 202

Java Transaction API�� 204

WebLogic Server Transactions��� 205

Demarcation and Control�� 206

Configuration�� 206

Transaction Logs�� 208

Monitoring�� 210

Recommended Exercises��� 211

Certification Questions��� 211

Coming Up�� 212

Chapter 14: �Application Deployment��� 213

Deployment Scenarios��� 214

Preparatory Phase��� 214

Storage Location�� 215

Storage Format��� 215

Configuration Plans�� 216

Deployment�� 221

Staging Mode��� 222

Distributing Applications�� 223

Starting and Stopping Applications�� 224

Redeployment�� 225

Undeployment�� 227

Recommended Exercises��� 228

Certification Questions��� 229

Coming Up�� 229

Table of Contents

xiii

Chapter 15: �Security�� 231

Concepts�� 231

Security Realms��� 232

Security Store��� 233

Security Providers�� 234

Authentication Provider�� 235

XACML Authorization Provider�� 235

Identity Assertion Provider��� 236

Credential Mapping Provider�� 236

XACML Role Mapping Provider��� 237

Adjudication Provider��� 237

CertPath Provider��� 237

Providers in Action��� 237

Custom Security Configuration�� 238

LDAP Integration��� 239

Recommended Exercises��� 242

Certification Questions��� 242

Coming Up�� 243

Chapter 16: �Backup and Upgrade�� 245

Backup and Recovery�� 245

Frequency��� 246

Integrity�� 246

Mode��� 247

Scope�� 247

WebLogic Server Backups��� 247

Managed Server Independence�� 250

Recovery�� 251

Upgrade��� 253

Recommended Exercises��� 256

Certification Questions��� 256

Table of Contents

xiv

Appendix A: �Answers to Sample Questions��� 257

Overview�� 257

Installation and Updates�� 258

Domains��� 260

Node Manager�� 261

Servers��� 262

Configuration Management�� 263

Logging and Monitoring��� 264

Networking�� 265

Cluster Basics�� 267

Clusters Advanced��� 268

Clusters Proxies��� 269

JDBC�� 270

Transactions��� 271

Application Deployment��� 272

Security�� 273

Backup and Upgrade�� 274

Index�� 275

Table of Contents

xv

About the Author

Gustavo Garnica is an experienced Technical Architect and

Consultant with over 15 years of international experience

implementing and supporting IT infrastructure and

operations processes in financial and telecommunications

environments. He is a former BEA Systems and Oracle

employee, and holds several cloud and enterprise software

certifications, including Oracle WebLogic Server certified

system administrator. He started developing software back

in the Netscape days, and currently architects and operates

enterprise software environments on cloud infrastructure.

xvii

About the Technical Reviewer

Julian Ortiz Iregui is a Cloud Solutions Architect at Oracle’s

Development Organization. He has extensive technical

architecture experience in enterprise organizations running

Oracle Fusion Middleware for mission-critical systems.

Today, he currently focuses on cloud computing and

infrastructure.  

xix

Acknowledgments

I think I may have made life a little harder for several people while authoring this book.

First my family’s. Sorry about keeping you waiting for so long; your love and patience will

always be an unequivocal reminder that a book is not the product of authors alone.

I extend the same heartfelt gratitude to my editors Susan McDermott and Rita

Fernando, to my technical reviewer Julian Ortiz, and also to those who I did not

personally meet, but whose work for this book was essential nonetheless.

I wish I could also properly thank so many people with whom I worked over the

years, and who I look up to. I sincerely expect you will not be disappointed in this work.

Lastly, to those in the same category but outside of the technical realm, you have

influenced my life so much. Thank you.

xxi

Foreword

WebLogic is one the most successful and powerful enterprise application development

platforms ever. Thousands of mission-critical applications serving some of the most

demanding business computing workloads in the world depend on WebLogic. That is a

fact that is unlikely to change any time soon.

Such a computing platform almost inevitably comes with complexities. The

complexity in part comes from the wide number of deployments, rich history, and

longevity that WebLogic boasts. The WebLogic team does what it can to manage these

complexities – principally by making sure that the official WebLogic documentation is

both comprehensive and up to date. As good as the official WebLogic documentation is,

it has always lacked a certain personal touch and approachability. After all, what better

way to learn WebLogic than from your own personal mentor, patiently showing you the

ropes and sharing years of hard-earned personal experience in the field? This is equally

true whether you are beginning to use WebLogic on the job or are seeking to certify

yourself on WebLogic. If you have such a personal mentor around you, consider yourself

very lucky. Chances are, however, that most of us that need to work with WebLogic in

the real world do not have ready access to such a person. That is where this book and

Gustavo Garnica come in.

Gustavo has years of in-depth knowledge and hands-on experience with WebLogic.

Much of this knowledge and experience comes from being a part of the WebLogic field

team at Oracle and working with some of the most daunting WebLogic deployments

in the world. It should not surprise you that Gustavo has worked with almost every

feature he has written about in this book in real life. In addition, Gustavo is a friendly,

approachable, and patient person by nature. You would be very hard pressed to find a

better person to mentor you on WebLogic than Gustavo. He has synthesized all these

valuable personal characteristics beautifully into the book. Each complex WebLogic

topic is explained in the simplest and most approachable way – covering the basics

whenever possible. Gustavo also shares unique knowledge that can only be gained

through years of real-world experience working inside the WebLogic team throughout

the book. While the book is comprehensive enough, it leaves out just enough detail

to keep the book from becoming overwhelming in the way the WebLogic official

xxii

documentation can be. There are ample diagrams, screenshots, and code examples

wherever helpful.

The book covers a range of topics including basic installation, configuration,

administration, monitoring, logging, clustering, networking, data access, and security.

The coverage of domains, the node manager, the console, JMX, and WLST shine

particularly bright. The content should definitely be good enough for the purposes of

WebLogic certification. Particularly helpful are the sample certification questions and

exercises included at the end of each chapter. The sequence of topics covered is very

sensible throughout. In fact, beyond the goals of certification, the book is a valuable

reference on the bookshelf of anyone working with WebLogic in the real world.

Your decision to make a personal investment in WebLogic and using this book as a

tool to do so is undeniably sound. I hope you enjoy the book and learn as much from it

as I did!

Reza Rahman
Senior Manager/Architect, CapTech Ventures Inc.

Former Java EEE/GlassFish/WebLogic Evangelist, Oracle

Foreword

xxiii

Introduction

Some time ago as an Oracle employee, and while on a consulting assignment with some

very nice IT folks in Caracas, Venezuela, I spoke with someone in a product management

team in Oracle regarding the configuration of the environment I was working on. He also

happened to be an Apress author. I do not think he remembers our brief conversation

but I do. He shared with me that it was his point of view that basically anyone could

achieve anything in technology given the right time and resources.

Becoming a certified Oracle WebLogic Server System Administrator is certainly a

task where this true notion can be validated.

For experienced WebLogic Server administrators, passing the exam will require

almost no effort as they will most likely already have spent enough time and resources

around WebLogic Server so that they will have gained the breadth and depth of

knowledge required by exam 1Z0-133.

For anybody else interested in passing the exam, the effort will require a varying

investment of time and resources, depending on their previous exposure to Java EE and

Java application servers in general, and to WebLogic Server in particular.

�The Certification Process and Requirements
As published on the Oracle University website, the 1Z0-133 exam is a proctored

exam delivered at PearsonVue centers around the world. Passing the exam earns the

designation of Oracle Certified Associate, Oracle WebLogic Server 12c Administrator

certification.

At the time of writing this book, the exam has a duration of 120 minutes and is

comprised of 77 multiple choice questions with a minimum passing score of 64%, and is

validated against Oracle WebLogic Server version 12.1.2 (released in June 2013).

Figure 1 shows these details as published in the Oracle University website.

xxiv

In order to register and schedule the exam, candidates must have active accounts

with both Oracle and PearsonVue. The Oracle account can be created at www.oracle.com

and the PearsonVue account can be created at www.pearsonvue.com/oracle. Creating a

PearsonVue account will also create an Oracle Testing ID. This ID must then be entered

at Oracle University’s certification website at certview.oracle.com, thus linking the Oracle

and PearsonVue accounts. There is a one-hour delay between the time that the Oracle

Testing ID has been created by PearsonVue and the time that it will be recognized by the

CertView website.

Once the candidate profile has been completed, the exam can be purchased and

scheduled directly from PearsonVue. The Oracle account can then be used to access

exam history, scores, and other details regarding the certification efforts at the CertView

website.

The exam experience is simple and standardized across test centers. Candidates

are required to present a photo ID at the selected test center and are not allowed to

introduce any objects into the test room. The exam terminal presents a simple user

interface displaying one question and its possible answers per each screen. The

questions can be marked for later review.

Once all questions have been answered, the exam may be submitted to Oracle for

grading. After a short period of time, usually under 30 minutes, a notification of the exam

result will be emailed to the candidate. There is a delay of around 24 hours between the

time that the notification of exam results is received and the time that the results will also

appear in the CertView website.

Figure 1.  Details of Oracle University exam 1Z0-133

Introduction

http://www.oracle.com/
http://www.pearsonvue.com/oracle

xxv

The two possible exam results are pass or fail. Regardless of the exam results,

feedback will be provided to help identify any questions that were answered incorrectly.

Users with a failing score should return to this feedback in preparing for future attempts.

Once Oracle has notified a candidate of a passing score, he or she has officially

become a certified Oracle WebLogic Server 12c Administrator. PearsonVue and

Oracle also offer badges for certain certifications. These badges are useful to publish

certification credentials to third parties and on social networks such as LinkedIn.

At the time of writing this book, there are no hard requirements enforced by Oracle

or by PearsonVue for a candidate to meet before attempting the exam, other than a

policy that specifies that a candidate who fails must wait 14 days before attempting the

same exam again, with a maximum of 4 attempts in a 12-month period. Candidates

should consult the Oracle certification website though, in order to ensure that the

requirements have not changed.

The only soft requirement for passing the exam is being conversant with the 16

topics covered. These topics range from a very basic introduction to WebLogic Server,

the product installation and basic configuration, and a review of the components and

features that most administrators use in their day-to-day work.

The following is the complete list of topics covered by the exam:

•	 Overview of WebLogic Server

•	 Installing and patching WebLogic Server

•	 Creating domains

•	 Starting servers

•	 Using the Administration Console

•	 Configuring JDBC

•	 Monitoring a domain

•	 Node Manager

•	 Deploying applications

•	 Network channels and virtual hosts

•	 Creating and configuring clusters

Introduction

xxvi

•	 Cluster proxies and sessions

•	 Cluster communication, planning, and troubleshooting

•	 Transactions

•	 WebLogic Server security

•	 Backing up and upgrading WebLogic Server

The depth of the exam questions covering these topics is such that a person with

limited experience administering WebLogic Server could probably find it hard to tackle.

Unfortunately, there is probably no way to objectively define a certain period of time

of actual work experience with WebLogic Server that will qualify a candidate to pass the

exam. Candidates should aim to gain experience working with the product, either on the

job, supporting real business applications on real production environments, or at least

performing guided exercises in a laboratory for a reasonable amount of time.

Practical experience will directly impact their ability to answer the questions

correctly. To illustrate this, consider the following question:

	 1.	 Which is the correct set of options available when configuring

feature X:

	 a.	 A, B, and C

	 b.	 C, D, and E

	 c.	 B, D, and F

	 d.	 All of the above

I remember a question like this from when I first became an Oracle WebLogic Server

certified administrator. I had recently worked with that particular feature in more than a

few environments, I knew how to use it correctly and I thought I had it right but I did not.

I knew very well what the options were individually, and I was able to quickly

recognize which one of the choices included an invalid option, but, to my surprise, it was

the first time that I had to think of these as sets of options rather than individual options

that could be used separately.

As exemplified by this, experience administering WebLogic Server should be

considered a first-class requirement for passing the exam, as opposed to simply having

an understanding of the concepts involved.

Introduction

xxvii

�Approach to Presenting the Content
The topics that the Oracle WebLogic Server 12c: Administration I certification exam

indeed covers can be classified in two groups:

•	 Topics that review how to configure and use the implementation of

a portion of the Java EE 6 specification1 in WebLogic Server, such as

Java Database Connectivity.

•	 Topics that review how to configure and use the features through

which Oracle differentiates its product from other Java application

servers, such as with the WebLogic Administration Console or

WebLogic Scripting Tool.

Note N ot all elements of the Java EE 6 specification implemented in Oracle
WebLogic Server are covered in exam 1Z0-133. The outstanding subset is covered
in exam 1Z0-134.

Each chapter in this book will present the content using the following structure:

•	 Brief description of the topic

•	 Step-by-step descriptions of well-known procedures to configure and

use WebLogic Server features

•	 List of recommended exercises to perform

•	 List of sample certification questions related to the topic covered

The topic description may include introductory information regarding the relevant

element of the Java EE specification. When included, this information will be brief and

provided solely as a general contextual reference to the topic at hand.

Often, there may be more than one way to perform a single administration task

in WebLogic Server, such as configuring a feature using a CLI interface, writing and

invoking a script to automate the configuration, or using the Administration Console

1�The Java EE compatibility page in the Oracle website at URL: http://www.oracle.com/
technetwork/java/javaee/overview/compatibility-jsp-136984.html includes links to the
Java EE 7 specification version, as well as links to our target Java EE 6 version.

Introduction

http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html
http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html

xxviii

to achieve the same goal. Each topic will cover the as many ways to perform the

administration procedures as the logical sequence of chapters allows.

As stated before, seasoned WebLogic Server administrators may have enough of a

refresher in preparing for the certification exam by simply challenging themselves to

respond correctly to all of the sample questions, whereas new administrators may find

that the recommended exercises will provide good practice for the concepts presented in

each chapter. Answering the sample questions will then be a good way to assert whether

or not they are making the required progress in their preparation.

�Recommended Exercises and Sample Questions
The recommended exercises will be listed by a simple statement describing a

requirement, such as:

•	 Configure A by using B.

No specific steps required to complete the exercises will be specified. It is expected

that the candidate will have gained enough understanding and context to the exercise

statement in order to resolve it. Candidates should be able to infer the specific procedure

to perform from the content presented in the corresponding chapter.

A laboratory or development environment upon which to complete the exercises

will be required. Completing the practices listed in Chapter 3 will result in such an

environment, which can then be cloned or otherwise enabled to complete all practices

in subsequent chapters.

Even though clustering and other high availability features will be addressed in the

topics, the CPU and RAM requirements of the laboratory will be minimal so that these

can be accomplished on any fairly recent laptop geared for geeks.

The sample questions in the book have been formulated to resemble the type and

depth of questions found in the certification exam and will test the understanding of the

topic covered but should not be considered a comprehensive reference. The answers to

these sets of questions can be found in Appendix A.

Introduction

1
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_1

CHAPTER 1

Overview
Java technology was created by a group of brilliant engineers from Sun Microsystems

headed by Dr. James Gosling. It could probably be fair to state that nearly all

technologists around the world have at least heard about, if not used, Java. This chapter

provides both, a brief of Java technology and an overview of the Java EE 6 features

implemented in WebLogic Server 12c.

Today the Java ecosystem appears more alive than ever. Java became 20 years old in

2015 and was also named TIOBE1 programming language of the year. Some would say that

there has never been a better time to work with Java technology, and I believe there is truth

in that statement, considering the recent evolution of the language and the platform.

Java is run truly just about everywhere. It can be found in places ranging from homes

to scientific laboratories, from gaming consoles and Blu-ray players to the computers in

the control room of NASA’s Jet Propulsion Laboratory.

In enterprise computing around the globe, a very large number of applications

with extreme requirements of availability and performance, in the most demanding

industries such as finance and telecommunications, are powered by Java application

servers such as WebLogic Server.

Nowadays, it is possible to launch a Java application server instance, deploy upon

it a modern application, and have it up and running, listening for requests, in just a few

seconds. It is possible to run enterprise Java technology on all sorts of infrastructure,

from high-end appliances to commodity hardware, from virtual machines to cloud

servers and containers.

1�The TIOBE Programming Community index is described as an indicator of the popularity of
programming languages whose ratings are based on several factors including the number of
skilled engineers worldwide.

2

�For New Administrators
Java technology includes among other elements a programming language and a

platform. At a high level, the Java platform can be described as the environment in which

applications written in the Java programming language can be run. In this book, we

touch on two of such Java platforms, namely, Java Standard Edition or Java SE, and Java

Enterprise Edition or Java EE.

The Java SE platform is comprised of the basic elements required to run Java

applications, including a Java Virtual Machine, the core API, as well as development and

deployment tools. The Java EE platform provides its own API and a runtime environment

for developing and running enterprise applications. Java EE sits on top of Java SE.

The evolution of the Java EE platform is guided by the Java Community Process

through expert groups that are comprised of individuals and organizations interested in

the development of the Java technology. These expert groups work on Java Specification

Requests that later become part of the Java EE Platform Specification. The Java EE

specification can then be implemented by product vendors.

WebLogic Server administrators are expected to be able to perform installation,

configuration, maintenance, and other operations on the full Java EE technology stack.

This includes having a proper understanding of the JVM, the Java SE and EE APIs, and

related tools and components, as well as the runtime environment and the enterprise

applications deployed on it. Typically, WebLogic Server administrators are also skilled

at working with related software products, from operating systems and file systems to

networking tools, from load balancers and proxies to databases and so forth.

�Enterprise Applications
Enterprise applications are named so because they exist to resolve the requirements

of information systems in large enterprises. For applications, enterprise requirements

include but are not limited to persistence, distribution, transactionality, security,

ubiquity, etc. For infrastructure, enterprise requirements include scalability, availability,

fault tolerance, performance, etc.

Chapter 1 Overview

3

In order to tackle these requirements, enterprise applications are commonly

designed to separate functionality into tiers. Typically, at least three tiers can be easily

identified: a front tier, a middle tier, and a data tier. Depending on the application

requirements, these tiers can be further subdivided by isolating even more specific

functionality into additional tiers. Java EE defines the technologies that once

implemented support to each of these tiers.

Enterprise applications are developed as self-contained components that reside in

one of these tiers. Before execution, an application component must be assembled into a

Java EE module and deployed into the right container for its type. The assembly process

specifies container configuration settings for each component in the Java EE module

and for the Java EE application at large. Most of the configuration is defined through

annotations in the application code rather than on XML deployment descriptors, some

of which have now become optional.

�Java Application Servers
A Java application server, such as Oracle WebLogic Server, implements the Java EE

APIs and provides the required standard infrastructure services in the form of runtime

environments or containers. Examples of these containers include the web container for

front tier components and the EJB container for business logic components residing in

the middle tier.

Enterprise applications are developed, deployed, and run on a container that

supports the specific services required by it. Application components are meant to

interact with one another, but they will only do so indirectly, through the platform

services available in the container where they have been deployed. Figure 1-1

depicts the logical Java EE architecture described in the preceding paragraphs at a

very basic level.

Chapter 1 Overview

4

In this logical view the Java platforms are represented by the larger rectangles.

These two platforms, Java SE and Java EE, will work in unison everywhere a Java

enterprise application is run. The same architectural elements may be seen running

application components in any tier of the Java enterprise architecture as described

before.

�Java EE Services
A partial list of the standard services supported by Java EE containers include the

following:

•	 Hyper Text Transfer Protocol (HTTP) – Web clients are commonly

processed and transferred for display on a client browser using the

HTTP protocol, including over SSL or TLS. Relevant Java EE APIs

include Servlet, JSP, JSF, and Web Services.

•	 Java Transaction API (JTA) – used by the container and the

application components to demarcate transaction boundaries.

Figure 1-1.  Logical view of the Java EE architecture

Chapter 1 Overview

5

•	 Java Database Connectivity (JDBC) – enables connectivity with

relational database systems. The JDBC API is included in the Java SE

platform but has additional requirements specified by the Java EE

platform.

•	 Java Persistence API (JPA) – manages persistence and object/

relational mapping used in Java domain models.

•	 Java Message Service (JMS) – used for messaging and supports point-

to-point as well as publish-subscribe models whereby messages

are delivered to individual consumers or to multiple subscribers,

respectively.

•	 Java Naming and Directory Interface (JNDI) – allows Java

components to discover and look up data and objects by their names.

It is included in the Java SE platform but has additional requirements

specified by the Java EE platform.

•	 Java API for XML Processing (JAXP) – provides support for SAX

and DOM APIs for parsing XML documents, as well as for XSLT

transformations. It is included in the Java SE platform.

•	 Java API for XML Web Services (JAX-WS) – provides support for both,

Web Service clients and endpoints following the WS-I Basic Profile

specification.

•	 Java Connector Architecture (JCA) – allows resource adapters to

heterogeneous sources to be plugged into a Java EE product. The

connector architecture defines a set of system-level contracts

between the Java EE server and the adapter. These contracts cover

security as well as connection, transaction, and thread management.

Chapter 1 Overview

www.allitebooks.com

http://www.allitebooks.org

6

•	 Java Authentication and Authorization Service (JAAS) – enables

services to authenticate users and enforce access controls by

implementing the Pluggable Authentication Module framework.

•	 Java Management Extensions (JMX) – enables management of Java

EE servers using Java objects.

The certification exam demands sufficient understanding of the above services

and APIs. These are all relevant in the day-to-day WebLogic Server administration,

operations, and troubleshooting tasks. These services will be analyzed in greater depth

in subsequent chapters.

�Oracle Fusion Middleware
Oracle Fusion Middleware is a collection of enterprise software products from which

Oracle WebLogic Server is a part. Oracle Fusion Middleware includes products and tools

for many solutions including the following:

•	 Service Oriented Architecture

•	 Business Process Management

•	 Business Intelligence

•	 Content Management

•	 Identity Management

SOA and BPM products implement standards-based infrastructure to connect

applications and systems with each other, and to orchestrate business activities in a

workflow. BI tools allow for integrating data and support decision making based on

business performance against key indicators. Content solutions are central repositories

from which documents and business media can be managed. Identity solutions allow for

centralized management of users, identities, and roles, and enable federated access and

authentication.

Chapter 1 Overview

7

Products in the Fusion Middleware family are Java components, implemented

as Java enterprise applications that run on a Java container. Oracle WebLogic Server

provides the foundation on which these products will run. Once installed, several of

these products can be configured to run interdependent and integrated among each

other as well as with other products such as Oracle Database.

Some of the Java components of Oracle Fusion Middleware include Oracle WebLogic

Server, Oracle Service Bus, Oracle SOA Suite, and Oracle BPM Suite.

�Oracle WebLogic Server
Oracle WebLogic Server 12c is a Java EE 6 specification compliant Java application

server. There are three WebLogic Server licensing offerings:

•	 Oracle WebLogic Server Standard Edition – Includes the Core

Oracle WebLogic Server plus Oracle TopLink, which is Oracle’s ORM

framework; Oracle Application Development Framework and Oracle

WebTier, which includes Oracle HTTP Server.

•	 Oracle WebLogic Server Enterprise Edition – Includes all Oracle

WebLogic Standard Edition features plus WebLogic Server clustering

and Java SE advanced platform, which includes the Java Mission

Control and Java Flight Recorder tools for profiling and diagnosing a

JVM instance.

•	 Oracle WebLogic Server Suite – Includes all Oracle Enterprise Edition

features plus Oracle Coherence Enterprise and Active GridLink for

RAC to optimize connectivity with Oracle RAC Databases.

Oracle WebLogic Server is certified to run on Windows, Linux, Solaris, and other

UNIX operating systems on top of Java SE platform version 7 2.

2�The full details of certification and interoperability for WebLogic Server 12c can be found in the
Oracle Fusion Middleware Supported System Configurations page at URL: http://www.oracle.
com/technetwork/middleware/ias/downloads/fusion-certification-100350.html.

Chapter 1 Overview

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

8

�New Features in WebLogic Server 12c
The improvements in Oracle WebLogic Server 12c version 12.1.2 are significant and

very exciting for experienced WebLogic Server administrators. As explained before,

these improvements come either as a result of the implementation of the Java EE 6

specification, or as added value to WebLogic Server as a Java EE product.

The changes listed and described in this section are not comprehensive. The ones

introduced here will also be analyzed in greater depth in subsequent chapters.

�Updates Required by Java EE 6
The following are the salient changes in features and technologies that were added to

WebLogic Server as part of its implementation of the Java EE 6 specification:

•	 Profiles – A profile in Java EE is a configuration of the platform for

a specific class of applications. All profiles share a set of common

features and add the required functionality according to the types

of applications that the profile supports. WebLogic Server has

compatible implementations with the Java EE 6 Web profile and with

the Java EE 6 Full Platform.

•	 Java API for Restful Web Services (JAX-RS) – defines an API for

the development of Web Services applications based on the

REST architectural style. Services are deployed as Servlets in web

containers. JAX-RS version 1.1 is defined in JSR 311.

•	 Managed Beans – are lightweight Plain Old Java Objects that support

resource injection, life cycle callbacks, and interceptors. Managed

beans can now be used anywhere in a Java EE application, not just in

web modules using JavaServer Faces. Managed Beans version 1.0 are

defined in JSR 316.

•	 Contexts and Dependency Injection (CDI) – provides a way for

developers to use enterprise beans and JavaServer Faces together.

CDI version 1.0 is defined in JSR 299.

•	 Bean Validation – defines an API for validating data in JavaBeans

components. With this, validation constraints can be defined in a

single place, mainly through annotations, and then shared across

multiple layers. Bean Validation version 1.0 is defined in JSR 303.

Chapter 1 Overview

9

•	 Updates to EJB specification – session bean interfaces have now been

made optional, just like other enterprise beans were. Singleton beans

have been introduced, as well as support for running EJBs directly on

a Servlet container. These updates have been introduced with EJB 3.1,

which is defined in JSR 318.

•	 Updates to Servlet specification – web containers must now support

that certain types of objects, such as serializable and EJB, may be

stored in HTTPSession objects, and also that when a session is moved

from one JVM to another, all objects of supported types must be

accurately recreated on the target JVM. Among other changes, these

updates have been introduced with Servlet 3.0, which is defined in

JSR 315.

•	 Updates to JavaServer Faces specification – annotations can be used

instead of a configuration file to specify managed beans. JSP has

been replaced by Facelets as standard display technology. Implicit

navigation and Ajax support has been included. These updates

have been introduced with JavaServer Faces 2.0, which is defined

in JSR 314.

�Other Functionality Changes and Additions
WebLogic Server 12c version 12.1.2 also includes changes and additions to its

functionality as a Java EE product. The following is a partial list of the new features:

•	 Installation features – a JDK is no longer included with any product

installers. Also, only generic installers are available, which can be used

on any supported production platform. The ZIP installer is still available

from Oracle OTN and is still intended for development use only.

•	 Configuration features – OHS and ODI system components of Oracle

Fusion Middleware can now be configured in a WebLogic Server

domain. Managed servers can now be added to an expandable

server group.

•	 WebSockets – support for IETF RFC 6455 has been added. This

provides two-way, full-duplex communication over a single TCP

connection.

Chapter 1 Overview

10

•	 TopLink – now supports JSON bindings and RESTful persistence for

JPA entities as well as NoSQL database support.

•	 Server Templates – eases administration by allowing for the definition

of certain attributes in a template. Such attributes can be changed

in a single place, and take effect on all server instances that use the

template.

•	 Dynamic Clusters – are based on server templates and enable easy

expansion of a cluster. The number of server instances required at

peak load is specified when configuring the cluster. WebLogic Server

will at runtime create the required number of server instances and

configure them accordingly.

•	 Simplified JMS configuration – JMS servers and persistent stores can

now directly target a cluster. This is further enhanced by dynamically

scaling JMS resources in a dynamic cluster.

�Conclusion
Oracle WebLogic Server is the premier Java application server product from Oracle, and

the foundation of the Fusion Middleware and Fusion Applications range of products.

Experienced WebLogic Server administrators and their employers had anticipated

some of the new features and functionality upgrades available in the 12c release

series for some time. It is an exciting time to become a WebLogic Server 12c certified

administrator.

�Recommended Exercises

	 1.	 Review the full certification requirements and interoperability

matrix for Oracle WebLogic Server 12c version 12.1.2.

	 2.	 Download the Oracle WebLogic Server 12c binary installers for

Linux.

	 3.	 Install a Linux server virtual machine and modify its networking

configuration to make it accessible from your workstation.

Chapter 1 Overview

11

�Certification Questions

	 1.	 Enterprise applications may run directly on top of the Java SE

platform.

a.	 True

b.	 False

	 2.	 What are the certified Java SE versions to run Oracle WebLogic

Server instances?

a.	 All the latest

b.	 Java SE 7 only

c.	 Java SE 6 only

d.	 Java SE 6 and 7

e.	 Any

	 3.	 What fundamental component of the Java EE architecture is

provided by an application server?

a.	 The virtual machine

b.	 The runtime environment

c.	 The database drivers

d.	 The management console

e.	 None of the above

	 4.	 Provides support for creating Web Service clients and endpoints

using a REST architectural style:

a.	 JAXP

b.	 JAX-WS

c.	 JMX

d.	 All of the above

e.	 None of the above

Chapter 1 Overview

12

	 5.	 What edition of WebLogic Server should I license if I intend to use

the Oracle JVM profiling tools?

a.	 WebLogic Server Standard Edition

b.	 WebLogic Server Enterprise Edition

c.	 WebLogic Server Suite

d.	 All of the above

e.	 None of the above

�Coming Up
This high-level overview of the technologies that represent the foundation of the

Oracle Fusion Middleware family of products is useful to remember the critical role

that WebLogic Server plays. The next chapter will introduce the first set of tasks that an

administrator performs in everyday work.

Chapter 1 Overview

13
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_2

CHAPTER 2

Installation and Updates
In this chapter we deal with installing and updating Oracle WebLogic Server. As a

matter of sheer preference, this book employs Linux as the operating system of choice to

describe the product installation, configuration, and other administration procedures.

This will not be a concern for administrators who prefer other operating systems since

Oracle has made a pretty good effort to provide a consistent administration experience

across all supported platforms.

For instance, as indicated in the previous chapter, product installers that are

currently provided to be used in production environments are generic installers, as

opposed to previous versions in which they were operating system dependent installers.

Note  Installer help messages still have references to other types of installers
even though Oracle has discontinued their general availability.

These generic installers are provided in the form of executable Java archives and their

use is consistent across all supported operating systems. This is true also with most, if

not all, of the WebLogic Server administration tools and procedures. Administrators will

simply have to apply the notions and concepts presented to the file formats, locations,

scripting environments, and other details of other supported operating systems.

In order to install a WebLogic Server environment that can be used to run production

applications, an administrator needs to cover much more than just running the product

installer. The process involves understanding what constitutes a certified configuration,

choosing the right distribution according to the intended use of the product, making sure

that all requirements are met, defining the installation details, selecting an installation

method, and running the product installer. Figure 2-1 depicts the complete effort.

14

�Supported Configurations
Oracle Fusion Middleware end users sometimes engage in rational conversations

regarding how they may or may not use WebLogic Server. The part of that conversation

that refers to what can legally be done with the licensed product is beyond the contents

of this book. However, from the technological perspective, there is a clear line that

differentiates the scenarios in which the use of WebLogic Server is supported by

Oracle and those in which it is not. Supported scenarios are defined by the possible

configurations listed in the Oracle Fusion Middleware certification matrix.

The matrix is available in the form of a Microsoft Excel file, composed of multiple

spreadsheets that contain information regarding several Oracle Fusion Middleware

products. The spreadsheet named System contains information relevant to understand

Review
Certifications

WebLogic Server
Installation Flow Diagram

Obtain Classic
Distribution

Yes

Yes

Yes

WLS Only

GUI

Attended

Obtain FMW
Infrastructure
Distribution

Satisfy Advanced
Requirements

Define
Locations

Perform Silent
Installation

Perform Graphic
Installation

Perform CLI
Installation

No

No

No

Satisfy Basic
Requirements

Figure 2-1.  Flow chart of the recommended process to install WebLogic Server
environments

Chapter 2 Installation and Updates

15

WebLogic Server configurations that are certified and therefore supported by Oracle. The

information is organized in columns as follows:

•	 Product

•	 Release

•	 Processor

•	 Operating system version

•	 Operating system update type

•	 Operating system update level

•	 Operating system type (32-bit or 64-bit)

•	 JDK vendor

•	 JDK version

•	 JDK type (32-bit or 64-bit)

•	 Exceptions and additional information

Each column header permits sorting the information to display a quick view of

whether or not a given combination of technologies has been certified by Oracle. For

example, an administrator might want to find out what WebLogic Server configurations

are supported by Oracle on SPARC. Unselecting all but the SPARC option in the

Processor column header will result in a list of rows indicating that it is possible to run

WebLogic Server on SPARC, on Oracle Solaris 10 or 11 only, and that in both cases Oracle

JDK is the only certified JDK. Figure 2-2 shows this view in the certification matrix.

Figure 2-2.  Extract of the Oracle Fusion Middleware Certification Matrix sorted to
display support for WebLogic Server on Solaris SPARC

Chapter 2 Installation and Updates

16

It is not uncommon to learn that an administrator decided to try, and actually

managed, to install and run a variant of a certified configuration, for example, by

using an unsupported JDK. The Oracle certification matrix does not imply that such a

configuration is not technically feasible, but only that Oracle will not support it. Running

unsupported configurations is usually a risk that corporations will refuse to take in their

production systems. Even so, this is not an absolute conclusion because the prospect

of running an unsupported configuration might arise and be fully justified in certain

technological scenarios. For instance, a very large corporation had set a deadline to

discontinue using IPv4 in their infrastructure at a time when Oracle had not yet certified

some of their middleware products to communicate using IPv6 only. They assessed

that the gains outweighed the risks and decided to move forward and run their Oracle

Fusion Middleware environments outside of the certified configurations, and succeeded

in doing so. A bold move like this is clearly not for every organization; it should only be

made after having carefully planned how to work around or mitigate any resulting issues.

�Fusion Middleware Infrastructure
WebLogic Server administrators are often tasked with installing and configuring

environments that support Oracle Application Development Framework. In a

nutshell, Oracle ADF is a framework that is built on Java EE standards and open source

technologies to deliver infrastructure services that facilitate development of enterprise

applications. Before the 12c release, administrators had to install, on top of WebLogic

Server, a product called Oracle Application Developer, which included the Oracle ADF

runtime and Oracle Enterprise Manager. Since the 12c release, Oracle offers a new

distribution package named Fusion Middleware Infrastructure. This new distribution

bundles together WebLogic Server with ADF, Enterprise Manager, and a few additional

components. When using the Fusion Middleware Infrastructure distribution installer,

these components are installed together in a common location. This new distribution is

an ideal foundation for administrators who will be supporting ADF and/or other Oracle

Fusion Middleware products in their environments.

The base topology that can be created from the Fusion Middleware Infrastructure

installer includes a DB host, requires an Oracle database, and is a very good starting

point to configure an environment for high availability. The traditional WebLogic Server

installer available in releases 11g and prior is still available in 12c.

Chapter 2 Installation and Updates

17

�Product Requirements
Once a certified configuration has been selected, but before the Oracle WebLogic Server

installer is run, several product requirements must be satisfied. These include CPU and

memory, disk space, networking, and a Java SE platform. All of these are described in the

following sections.

Administrators who support environments in which the Middleware Infrastructure

distribution is used to install WebLogic Server, or in which additional Fusion Middleware

products are used, will need to satisfy some advanced requirements such as installing

a database management system and using it to create the corresponding Fusion

Middleware product schemas. Such details are not covered by the 1Z0-133 certification

exam and are therefore outside the scope of this book.

�CPU and Memory Requirements
The Oracle Fusion Middleware System Requirements and Specifications page 1

defines the set of minimum requirements for systems on which WebLogic Server will be

installed. WebLogic Server requires at least one 1 GHz CPU and 4 GB of physical RAM,

plus at least 4 GB of swap space. This requirement is the same across all supported

operating systems 2.

For a development environment where all components reside on a single JVM, these

minimum settings should be enough. Production environments require more than one

JVM to be configured to run as a cluster. As a general rule for environments running

more than one JVM in the same system, Oracle recommends considering a minimum

of 3 GB of available memory for the operating system itself and any other processes,

and 3 GB more of available memory for each JVM. Again, this is just a statement of

the minimum requirements for a multi-JVM system. The optimal configuration of a

production environment should be defined by performing a formal capacity planning

exercise, which should account for this as well as for other derived settings such as the

number of file descriptors per process and the number of processes required 3.

1�The Oracle Fusion Middleware System Requirements and Specifications document is available at
http://docs.oracle.com/cd/E23104_01/sysreqs1213/sysrs.htm.

2�The Oracle Fusion Middleware System Requirements and Specifications document is available at
http://docs.oracle.com/cd/E23104_01/sysreqs1213/sysrs.htm.

3�On Linux operating systems, the following limits should be increased in the /etc/security/limits.
conf file: soft – nofile – 4096, hard – nofile – 65536, soft – noproc – 2047, hard – noproc – 16384.

Chapter 2 Installation and Updates

http://docs.oracle.com/cd/E23104_01/sysreqs1213/sysrs.htm
http://docs.oracle.com/cd/E23104_01/sysreqs1213/sysrs.htm

18

�Disk Space
An installation of WebLogic Server with default settings will take close to 900 MB of disk

space. Oracle states that at least 2.5 times this space is also required in temporary space

during the installation process.

�Networking
WebLogic Server 12c supports IPv4, IPv6, or dual-stack networking configurations. The

topology in which WebLogic Server runs determines the applicable configuration mode.

In the product documentation, Oracle defines five supported topologies and lists the IP

versions for WebLogic Server in each one of them. In short, when WebLogic Server runs

on an IPv6 only system, the rest of the topology, such as front-end proxies and back-end

database management systems, should also run on hosts configured with IPv6 only.

The rest of the topologies mandate either an IPv4-only or a dual-stack configuration,

the definition of which depends on what products are in use in a given topology, and on

what IP configurations the underlying hosts have.

�Java SE
Often, organizations already have other systems in place when they decide to introduce

Oracle middleware to their existing shops. It is likely that they will already have defined

their choice of processor type, and they will probably also have narrowed down their

operating system options to a couple of types or versions.

Regardless of the processor, operating system type and version, all certified

configurations of WebLogic Server version 12.1.2 require Java SE 7, update 15, or later 4.

The recommended general practice is to always use the latest update of the supported Java

SE platform version unless there are valid reasons for using a specific update version.

Java SE 7 reached the end of free and public updates on April 2015, and the latest

available update is number 80 5. Subsequent Java SE 7 updates are published by Oracle

in its support website for customers with a support license. Java SE releases 8 or 9 are not

certified for Oracle WebLogic Server version 12.1.2.

4�Elsewhere in the documentation library, the required Java SE 7 update for WebLogic Server
version 12.1.2.0.0 is 55 or later.

5�The last public update of Java SE 7 is available from the Java Archive Downloads page at
http://www.oracle.com/technetwork/java/archive-139210.html.

Chapter 2 Installation and Updates

http://www.oracle.com/technetwork/java/archive-139210.html

19

�Installation Overview
The process of running the WebLogic Server installer is quite straightforward. The actual

installation will mostly just unpack the files onto the target file system. Performing the

installation locally on a fairly modern system takes just a couple of minutes 6.

Assuming that the Java SE platform binaries have been included in the system path,

the installer can be run by the following command:

java -jar fmw_12.1.3.0.0_wls.jar

As expected, the installer provides information regarding options using the help

(-help) argument. One useful option is to have the installer ignore the results of the

system requirements check (-ignoreSysPrereqs), useful for example when installing the

product on an unsupported operating system. Conversely, an administrator may just

want to have the installer check if her system is supported but not install the product

just yet (-executeSysPrereqs). The installer supports additional arguments that will be

reviewed in the next section.

The installation process is comprised of a few steps where configuration information

is passed to the installer, and a few other steps in which confirming information is

presented to the user.

Oracle keeps track of product installations in a UNIX or Linux system by creating

a product inventory. The first step in the installation process is to define a location for

the product inventory and specifying an operating system group that will have write

permissions to the inventory directory. The installer will also create a script named

createCentralInventory.sh in the inventory directory, which if run by root, will create an

inventory pointer file named oraInst.loc in a standard system-wide location. Subsequent

product installations or upgrades will recognize the presence of a central inventory and

will not prompt an administrator to create one.

The second step is defining the WebLogic Server installation directory, which

is referred to as the Oracle home 7 and its location is referred to as the value of the

ORACLE_HOME environment variable in the product documentation. This directory

6�The actual time the installation will take will be longer if installing on a remote machine by
forwarding the display.

7�Administrators of Fusion Middleware 11g referred to this location and variable as the
middleware home and MW_HOME respectively, but this has been dropped by Oracle starting
with the 12c release series.

Chapter 2 Installation and Updates

20

is a read-only location that will contain product binaries and library files. It is a

recommended practice to keep this location separate from the location where the

runtime product configuration information is located.

The third step is choosing an installation type. The WebLogic Server installer offers

three choices: WebLogic Server, Coherence, and Complete with Examples. Each type

comprises several feature sets. Feature sets of several Fusion Middleware products may

coexist on the same Oracle home.

The following is a list of all feature sets available in the WebLogic Server distribution,

grouped by product, with a small description of their purpose or function:

•	 Core server

•	 Core application server (WebLogic Server runtime with full

support for Java EE 6)

•	 Coherence product files (distributed data management and

caching services)

•	 Web 2 HTTP Pub-Sub server (a publish-subscribe server based

on the Bayeux protocol)

•	 WebLogic SCA (container for applications that use the SCA set of

standards)

•	 WebLogic client jars (to be used with RMI clients that use the T3

proprietary protocol)

•	 Administrative tools

•	 Administration console language help files (additional languages

of the online help)

•	 CIE WLS config (required by the configuration tools)

•	 Database support

•	 Third-party JDBC drivers (drivers for systems such as Microsoft

SQL Server) 8

•	 WebLogic evaluation database (Apache Derby)

8�My Oracle Support document ID 1969871.1 includes SQL Server, DB2, Sybase, and Derby in the
list of installable third-party drivers.

Chapter 2 Installation and Updates

21

•	 Open source components

•	 Jackson (JSON processor)

•	 Jersey (JAX-RS official implementation)

•	 Apache Maven (build management tool)

•	 Examples

•	 Server examples (sample applications to demonstrate key

WebLogic features)

•	 Coherence examples (sample applications to demonstrate key

Coherence features)

•	 Oracle installation infrastructure

•	 OPatch (tool for updating and patching WebLogic Server)

Selecting the option “Complete with Examples” will include all feature sets available.

The difference between Complete and the WebLogic installation option is that the

latter does not include sample applications nor the evaluation database. Likewise, the

WebLogic installation option includes database support and WebLogic client JARs that

the Coherence installation type does not.

Once an installation type is selected, the installer will verify the system requirements,

including if the operating system and the Java SE platform used are supported. If

the results of the check are positive, the installer continues by requesting an email

address and the password of a My Oracle Support account to subsequently inform the

administrator of any security updates. This is an important but optional request. When

declined, an administrator must ensure to stay on top of the latest security information

released by Oracle to update the WebLogic Server environment.

In the next step, the installation tool will present a summary of the choices made

and allow saving the installation configuration to a file. If confirmed that everything is as

desired, the product files will be extracted and installed. The final step will again present

a summary that will include the Oracle home location, the location of the log file written

by the installer, and the list of feature sets installed.

Chapter 2 Installation and Updates

22

�Installation Methods
The WebLogic Server 12c release series has two installation methods available: graphic

and silent. The previous section described the installation process from the perspective

of a graphic installation. The console method that was available in previous versions is

not available in 12c.

The silent installation method is a convenient method to perform an installation

on a remote system in which X11 forwarding is not enabled or when manually running

the installer is not an option. The silent installation method is best for automating the

installation process when managing a large number of systems.

As reviewed in the previous section, the installer requires some information to

configure the installation. Running the installer tool in silent method requires a response

file from which this information will be read. The summary screen of the installer

running in graphical mode allows saving such a response file that will contain the

selections made in previous screens. This can then be used as a template for creating

response files for other systems.

In addition to the response file, running the installer in silent mode requires a file

that by convention is named oraInst.loc that, as the name implies, is a pointer to the

inventory location. This file must contain the same two pieces of information that the

first step of the graphic installer requires in the following format:

inventory_loc=/path/to/inventory/location

inst_group=group_name

The absolute path to this file must be passed to the installer as a command-line

argument. The installer will also require an indication that it must run on silent mode, as

well as the absolute path to the response file.

The response file must contain all other pieces of information gathered by the

installer tool in graphic mode. The most important of these are the location of the Oracle

home and the install type. The rest of the lines require information regarding declining

or accepting notification of security updates. For the sake of brevity, the contents of the

response file are not shown. The following is the complete command to run the installer

tool in silent mode:

$JAVA_HOME/bin/java -jar fmw_12.1.3.0.0_wls.jar -silent -invPtrLoc /path/

to/oraInst.loc -responseFile /path/to/env.rsp

Chapter 2 Installation and Updates

23

The text output of a silent installation displays the results of the tool executing the

various system requirements checks, reading the response file, and a progress bar of the

installation, followed by a message stating if the installation completed successfully.

�Installation Structure
Either installation method results in the exact same installed structure in the target

file system. The following directories and files will be created by the installer after a

successful run:

•	 coherence (core Coherence product files)

•	 install (files related to installation run)

•	 inventory (product inventory that is local to this Oracle home)

•	 OPatch (patch and update tool)

•	 oracle_common (libraries required by WebLogic Server)

•	 oraInst.loc (pointer to local inventory)

•	 oui (installer tool product files)

•	 wlserver (core WebLogic Server product files)

At this point, the WebLogic Server installation has been successful and the system is

ready for product configuration.

�Updating and Patching
Experienced administrators in releases previous to 12c had to use one tool to update

and patch WebLogic Server and another tool to update and patch other Oracle Fusion

Middleware products. OPatch has been consolidated as the only tool available to

perform patching and updating. The OPatch version included is 13.1.0.0. OPatch

requires Oracle Universal Installer, which gets installed in any WebLogic Server

installation type. Eventually both tools, OPatch and OUI, may require being updated or

patched. In order to maintain proper functionality, both tools must be maintained in the

same version. The OUI version can be verified in the ORACLE_HOME/oui/oraparam.ini

file, and the OPatch version can be checked by running ORACLE_HOME/OPatch/opatch

with the version command.

Chapter 2 Installation and Updates

24

The following types of product updates are released by Oracle, are downloadable

from the My Oracle Support site, and must be processed by OPatch:

•	 Interim (contains fixes available between product releases)

•	 Bundle (contains fixes available between patch sets)

•	 Security Patch Update (security fixes, released quarterly)

•	 Patch Set Update (fixes that address the top 50 WLS critical bugs,

released quarterly)

The general process for using OPatch is as follows:

	 1.	 Identify, download, and extract patch.

	 2.	 Review specific patch or update instructions in the README.txt

file included.

	 3.	 Set ORACLE_HOME and OPatch locations in PATH.

	 4.	 Verify that the OPatch inventory is sane (opatch lsinventory).

	 5.	 Apply update (opatch apply PATCHDIR).

	 6.	 Verify that issues addressed have been resolved.

It is possible to verify that all prerequisites for a patch or update are present in the

Oracle home by running the apply command passing the -report argument. Patches may

also be rolled back by using the rollback command of opatch. Applying or rolling back

multiple patches is possible by using the apply and rollback commands of opatch. This

requires passing the -id argument followed by a list of patch identifiers. Log files of either

apply or rollback operations are created after each operation.

It is a recommended practice to create a specific directory to extract all patches and

updates applied to an Oracle home directly under the OPatch directory.

�De-installation
The product removal tool is available at ORACLE_HOME/oui/bin/deinstall.sh. If a

WebLogic Server environment has already been configured and has JVMs running, these

must be stopped before attempting to run the product removal tool. Once the de-install

tool has been run, the Oracle home directory may be manually removed.

Chapter 2 Installation and Updates

25

�Recommended Exercises

	 1.	 Perform an installation of WebLogic Server 12c version 12.1.2

using the Complete with Examples installation type and save the

corresponding response file.

	 2.	 Edit the response file to define a different Oracle home and a

different installation type.

	 3.	 Perform a silent installation of WebLogic Server 12c version 12.1.2

using a response file.

	 4.	 Review the two Oracle homes just installed by contrasting the

resulting file system structures.

�Certification Questions

	 1.	 Select the operating systems certified to run WebLogic Server 12c

in production environments:

a.	 Red Hat Linux 7

b.	 Ubuntu Linux 14.04

c.	 Microsoft Windows 7

d.	 Mac OS 10.5

e.	 Oracle Solaris 11

	 2.	 Select the product distribution types supported to run WebLogic

Server in production environments:

a.	 Physical media

b.	 WebLogic Server JAR file

c.	 Middleware Infrastructure JAR file

d.	 ZIP distributions

e.	 All of the above

Chapter 2 Installation and Updates

www.allitebooks.com

http://www.allitebooks.org

26

	 3.	 Select the option that lists the correct components of the standard

installation topology:

a.	� One administration server, one managed server, one machine,

one domain

b.	� Two administration servers, two managed servers, two

machines, one domain

c.	� One administration server, one cluster, two managed servers,

one machine, one domain

d.	 None of the above

e.	 All of the above

	 4.	 Select all of the supported installation methods:

a.	 Graphic

b.	 Console

c.	 Silent

d.	 Remote

e.	 Local

	 5.	 Select the required command to apply a security patch.:

a.	 bsu -install

b.	 bsu -apply

c.	 opatch install

d.	 opatch apply

e.	 opatch secure

�Coming Up
For most WebLogic Server users, installing WebLogic Server is a relatively standard

procedure; however, the configuration effort is a road with many slopes. In the next

chapter we cover the main configuration concept: domains.

Chapter 2 Installation and Updates

27
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_3

CHAPTER 3

Domains
In this chapter we discuss Oracle WebLogic Server domains and its components: the

domain structure in file system and the methods available to create and configure a

domain. We also walk through the domain configuration flow and discuss the steps

required to configure a domain spanning multiple hosts, one of several required actions

to configure WebLogic server in high availability.

We also touch on WebLogic Scripting Tool or WLST, which is an administration tool

highly useful in automating WebLogic Server administrative tasks. A brief mention is

made of how WLST works, such as connectivity and run modes, enough to understand

how to use WLST to accomplish the task of configuring a domain.

�Definition
A domain is the logical unit that comprises all components and services that make up

a WebLogic environment. A domain always includes one and only one administration

server that acts as a centralized domain configuration controller and is commonly

named AdminServer. A typical WebLogic domain also contains one or more managed

servers. Business applications are deployed and run on managed servers. Managed

servers can be organized into clusters. A single domain may contain one or more

clusters.

Domains that run one or more managed servers are commonly configured with a

component named node manager whose purpose is to perform administrative actions

on managed servers on behalf of the administration server, such as controlling server life

cycle. All of these domain components are JVM processes.

28

A domain includes also other types of components such as domain services

and application resources; these include data sources, messaging destinations,

security providers, etc. These types of components are deployed and configured

on top of the domain JVMs. Configuration management in a WebLogic Server

domain is commonly done through the administration console that is deployed on

the administration server, as well as through custom JMX clients talking with the

administration server 1. Communication between cluster members is achieved

using T3 2 over RMI.

�Domain Components
The logical major components of an Oracle WebLogic Server domain are servers.

These may play different roles, and may have logical associations within a domain. The

following is a simple classification of the domain components.

•	 Administration server – Single point of control and distribution

of configuration in the domain. It also monitors the health and

performance of managed servers, including the domain services and

applications deployed on them.

•	 Managed servers – Upon starting, each managed server contacts

the administration server to get a read-only copy of the domain

configuration. Managed servers are used to run business applications

and other domain services. Failure of the administration server does

not negatively impact the operation of managed servers.

•	 Clusters – Comprised of one or more managed servers. Clusters

facilitate scalability, fail-over, and load balancing, which are typically

required in environments where increased performance, throughput,

and availability are mandatory.

1�JMX is a technology included in Java SE platform, useful to build managing and monitoring
solutions, and is the underlying standard used in WebLogic Server administration.

2�JVMs in a WebLogic domain open T3 channels to communicate with other JVMs. T3 includes
multiplexing and point-to-point heartbeats to determine connection availability. It is also
possible to use T3 over SSL if the required certificates configuration has been completed.

Chapter 3 Domains

29

•	 Coherence Clusters – Support in-memory, distributed caching for

applications 3.

�Product Installation and Domains
A domain may run from a single product installation on a single host. In fact, multiple

domains may run from a single product installation, either in a single host, or running

from an installation on shared storage accessible to each participating host.

The determination to how many product installations will be required to run a

particular WebLogic Server environment is a question of scope and business purpose.

For example, an administrator may need to run multiple domains for multiple business

units, and he may decide to run a single product installation for each domain. He may

then be able to maintain different patch set levels on each WebLogic Server installation,

according to the requirements of the applications of each business unit. From the

technological perspective, the factors that come into play are manageability and

independence.

�Domain Topology
For the purposes of our analysis, Figure 3-1 depicts a basic domain topology comprised

of a single host configured with one machine, one cluster made up of two managed

servers, the administration server, and a node manager.

3�Coherence Clusters are different from WebLogic Server clusters. When as part of the domain
configuration a cluster is configured, it is a WebLogic Server cluster, not a Coherence cluster.

Chapter 3 Domains

30

In this diagram, the boxes represent JVM processes and the dotted lines represent

logical boundaries of the WebLogic Server domain, machine, and cluster definitions.

In environments where a domain spans multiple hosts, the cluster can also cover up

to as many hosts as the domain does. Unlike this, the machine definition and the node

manager are designed to remain on an individual host in a single domain. This is so,

precisely to enable a single administration server to manage and control any number of

clusters and managed servers in disparate hosts. However, if desired, multiple machine

definitions can exist in a single host, as long as they all belong in different domains.

Domain

Host

Cluster1

Machine1

AdminServer

ManagedServer1

ManagedServerN

NodeManager

WebLogic Server
Basic Domain Topology

Figure 3-1.  Basic Domain Topology

Chapter 3 Domains

31

�Domain Structure
As mentioned before, it is an Oracle recommended practice to maintain the

directory where the product installation is stored, separate from the product

configuration. Despite this recommendation, the configuration wizard will by default

suggest to create the domain in a path such as ORACLE_HOME/user_projects/

domains/domain_name.

Most WebLogic Server administrators will instead define a directory that contains

separate directories for product installation and product configuration. In this latter

directory the domains/domain_name directory can be created. It is a convention also

to suffix the name of the domain directory with the string: _domain. Unless there is a

need to use a different name for the domain directory, it is not a bad idea to stick to this

convention but it is by no means a requirement.

Whatever the location and names defined, the following directories will be created in

the target directory:

•	 autodeploy – Depending on the domain configuration, at regular

intervals WebLogic can scan this directory for files of type EAR, WAR,

or JAR and automatically deploy them.

•	 bin – Contains server life-cycle control scripts. Other scripts may be

added to this directory, for example, as hooks to modify the behavior

of the JVM using command-line arguments.

•	 config - Main domain configuration directory, includes information

about the deployment state of all servers in the domain.

•	 config/jdbc – Contains system modules configuration for JDBC.

•	 config/jms – Contains system modules configuration for JMS.

•	 console-ext – Contains files that represent customization of the

administration console.

•	 init-info – Contains files used when creating the domain.

•	 lib – JAR files found by WebLogic in this directory are added to the

CLASSPATH of each server instance.

•	 pending – Contains files representing domain configuration changes

requested but not yet activated.

Chapter 3 Domains

32

•	 security – Contains critical files of the security configuration of the

domain, including those used in processes such as file encryption

and decryption.

•	 servers – Contains a directory for each server instance that has been

started in the host.

•	 servers/server-name/data – Contains files representing the

persistent state of this particular server instance.

•	 servers/server-name/security – Contains security files required

to run this particular server instance, such as the one containing

the credentials to query the administration server for configuration

information.

•	 servers/server-name/logs – Contains log files of this particular

server instance.

•	 servers/server-name/tmp – Contains temporary data of this

particular server instance.

•	 servers/server-name/cache – Contains processed data used in this

particular server instance.

The content of the logs, tmp, and cache directories of each managed server

should be left alone at runtime. However, it is possible to discard their contents once the

corresponding server instances have been shut down.

�Configuration Repository
The config.xml file located in the config directory conforms to an XSD schema

and represents the main configuration repository for the domain. Even though

with sufficient XML/XSD knowledge it is possible to edit the file directly, it is

recommended to do so only through the administration console, deployed on the

AdminServer and accessible through the /console context, or through a JMX client

that will interact with the in-memory representation of the configuration that is kept

by the administration server.

Chapter 3 Domains

33

At runtime, the config.xml should never be manually updated. Given that the

administration server manages changes to the config.xml file through a specific process,

manually editing the file may interfere with such process and could result in domain

corruption. Also, since the configuration is contained in the config.xml file, it is by nature

not distributed; therefore any updates done to config.xml files in the file system structures

of managed servers will be overwritten by the administration server upon restart.

Security credentials maintained in configuration files are in encrypted form only.

�Configuration Methods
Creating and configuring a domain can be performed using one of several methods:

the configuration wizard, WLST, or the pack and unpack commands. The scripts to

execute all of these methods can be found in the ORACLE_HOME/wlserver/common/

bin directory.

•	 Configuration Wizard – Learning about the general options

available to configure a domain is best achieved by using the

configuration wizard. It supports a GUI that guides an administrator

through a series of screens that require entering the necessary

information to define and configure domain components. The

configuration wizard can be run by executing the config.sh file (4).

The configuration wizard may also be run from remote systems that

have been configured with display forwarding.

•	 Pack and Unpack commands – For administrators whose task is to

replicate or distribute existing domains, the pack.sh and unpack.sh

commands offer a simple, one-step invocation that will get the job

done efficiently.

4�To prevent slowness when creating domains on Linux systems, the installation wizard JVM
should be configured to use the non-blocking system entropy device by specifying -Djava.
security.egd=/dev/./urandom as value of the environment variable CONFIG_JVM_ARGS.

Chapter 3 Domains

34

•	 WLST – Seasoned professionals working to automate domain

creation, update, and extension can benefit from using WLST,

which is a CLI scripting environment based on Jython. It offers a

large set of scripting functions implemented specifically to perform

WebLogic Server administrative actions. WLST can be run either

online or offline. Running it online means operating as a JMX

client, connecting to an administration server, and is analogous

to operating on the administration console. Running it offline is

analogous to running the configuration wizard. Running WLST

offline is the right approach to create domain templates, create

domains, or modify existing domains. WLST offers functions

such as readDomain(path) or readTemplate(file) to build in-

memory representations of domains that can be customized, and

createDomain(path) or writeTemplate(file) to persist the configured

in-memory representation of a domain to file system. WLST also

has three operation modes, interactive, script, or batch mode and

embedded (in Java programs). WLST can be run by executing the

wlst.sh script to enter interactive mode, or by passing a .py script

containing the desired code to execute, including WebLogic Server

function invocations.

�Domain Templates
Regardless of the method involved, domain management always involves domain

templates. A domain template defines the full set of resources that a domain is

comprised of. When WebLogic Server is installed, it comes with a set of predefined

templates, which can be found in the wlserver/common/templates/wls directory.

The basic WebLogic Server domain template is wls.jar. It defines the necessary

security configuration and the administration server. Because it has no dependencies, it

can be used as the basis to create more complex domain configurations.

Other types of domain templates include extension templates and reconfiguration

templates. The former can only be used to add functionality to an existing domain, as

opposed to creating domains from scratch; the latter are provided by Oracle to facilitate

certain domain updates.

Chapter 3 Domains

35

�Planning Domain Configuration
Creating a domain is the process of defining and configuring all WebLogic Server

components and services required by the business purpose the domain will serve, using

a tool to deploy the corresponding configuration to file system. Therefore, preparing

to create and configure a domain requires an administrator to define the number of

servers, the IP address or DNS names and port numbers they will use; the number of

hosts that will participate in the domain and whether or not the managed servers will be

members of a cluster, as well as the number of clusters the domain will support. All of

these components will require an identification that must be unique in the domain. Also,

the combination of IP addresses or DNS names and port numbers must be available in

their corresponding network 5.

A domain has two server startup modes: development and production. Either one of

them must be selected, depending on the purpose of the domain. The choice of server

startup mode has an impact on security. Development mode will allow starting servers

without entering administration credentials and has a different number of threads in

their execution pool, logs a different amount of information by default, and has different

operation timeouts.

Servers in a domain that will be supported by multiple product installations must all

run the same product and patch level version.

�Configuration Flow
Figure 3-2 shows the full process of creating and configuring the basic domain

topology described in this chapter, from the perspective of an administrator using the

configuration wizard.

5�Even though it is not explicitly required by the domain configuration, the corresponding firewall
rules must be in place to allow inbound network communications as well as communications
between the servers in the domain.

Chapter 3 Domains

36

This flow diagram shows that the first group of screens gather general information

about the domain including the template that will be used as domain source, the name

and location of the domain, the administration credentials, the domain mode, and the

JDK that all JVMs will use.

WebLogic Server
Domain Creation Flow Diagram

ManagedServers
Addressing

and Security

ManagedServers
and Clusters
Distribution

Machines and
Servers

Distribution

Confirm
Configuration

Summary

Clusters
Addressing

and Security

Machines
Addressing

Domain Creation
Complete

Define Domain
Settings

Enter Domain
Location

Select Domain
Template

Enter Admin
Credentials

Select Domain
Mode and JDK

Customize
AdminServers
and Clusters

NodeManagerAdminServer

Yes Yes Yes No

Addressing
and Security

Type and
Credentials

Figure 3-2.  Domain creation flow diagram

Chapter 3 Domains

37

The next screen allows choosing which subsequent portions to customize, the

choices are administration server, node manager, managed servers, and clusters. If

no further customization is made, the domain creation can proceed and will result

in a domain that only has the minimal components to be functional, meaning the

administration server with default configuration values.

If an administrator chooses to select any of the customization options, additional

steps will be dynamically added to the wizard. In these additional screens the

customization information is provided. The flow diagram displays the type of

information required when customizing each item.

The last screen displays the configuration summary. The summary has different

views that allow an administrator to verify the different perspectives in which domain

components will be distributed, such as clusters and machines. Once this information

has been reviewed, the actual domain creation and configuration can be started. As

expected, the wizard will display a progress bar, indicating the actions in progress until

complete.

�Domain Propagation
The base topology depicted in the diagram at the beginning of this chapter included

only one host. Production environments will typically start with two hosts, sometimes

spanning dozens of hosts working together under a single domain configuration.

As mentioned before, the size of a domain is not determined solely considering

technological factors, but is also a matter of scope and business purpose of the

applications that will be deployed on this infrastructure.

From the technological perspective, WebLogic Server can support domains with

several clusters, each with dozens of managed servers running on a similarly large

number of hosts.

However many hosts comprise a WebLogic Server environment, a domain is

created and configured first in one host, and is then propagated to the rest of the hosts.

This process is performed by using two configuration tools mentioned in the previous

section: the pack and unpack commands. Scripts to run these commands are located in

the ORACLE_HOME/wlserver/common/bin directory.

Chapter 3 Domains

38

�Pack Command
The pack.sh script is used as an efficient, one-step command to create domain templates

from existing domains. This tool cannot be used to customize domains. The pack.sh

command creates a template by taking a snapshot of a fully functional domain. The pack

command can produce either domain templates or managed server templates.

Domain templates can be used to create full copies of the source domain, or can

be used as a starting point for further customization using other tools, such as the

configuration wizard or WLST.

Managed server templates include only a subset of the domain resources, just

enough to create the managed server structure on the file system of a host participating

in a domain. This is precisely the type of template required to propagate the

configuration of a domain to other hosts whose responsibility as domain members will

only be to run managed servers. The pack command can be used to create a domain

template as follows:

./pack.sh -domain=/path/to/source_domain -template=/path/to/domain_

template.jar -template_name=MyDomain -log=/path/to/pack.log

The pack command receives as arguments the path to the domain that will be

packed, the path to the domain template that will be created, name inclusive, a template

name, and optionally a log file.

Creating a managed server template requires adding the argument: -managed=true

to the command above.

�Unpack Command
The unpack.sh script is the counter part of the pack.sh script. It is also executed as an

efficient, one-step command but it is used to create domains from existing templates.

The unpack command used with a domain template can create a domain and optionally

customize the administration username and/or password, the JDK path, the domain

mode, the node manager configuration, as well as specifying an applications directory

when needed.

Chapter 3 Domains

39

If used with a managed server template, no customization is available because the

template will use the configuration settings specified by the administration server in the

source domain. The unpack command can be used to create a domain from a template

as follows:

./unpack.sh -template=/path/to/domain_template.jar -domain=/path/to/target_

domain -log=/path/to/unpack.log

The unpack command takes as arguments the path to the domain template and

the path to the location where the domain will be created by expanding the contents of

the domain template. Customization when using a domain template is optional. It is

available through the following arguments:

-user_name=USER -password=PASS -app_dir=/path/to/apps -nodemanager_

type=TYPE6 -nodemanager_home=/path/to/nodemanager -java_home=/path/to/jdk

-server_start_mode=MODE

The available customization options with the unpack command include setting the

Node Manager type, either plan or SSL; the path to the Node Manager home location;

and a server start mode, either development or production.

�Propagation Process
Assuming that WebLogic Server has already been installed and updated in each of

the hosts that will run the managed servers in a domain, propagating the domain

configuration will simply involve running the pack command to create a managed

server template, transferring the template to each of the hosts that will run the managed

servers, running the unpack command on each of them and start the servers.

Upon startup, the managed servers will connect with the administration server to

obtain a fresh copy of the configuration and will be ready to process requests for any

deployed applications.

6�Configuring node manager is the topic of the next chapter.

Chapter 3 Domains

40

�Recommended Exercises

	 1.	 Using the configuration wizard, create a domain that defines a

cluster with two managed servers and a machine definition for

the host.

	 2.	 Review the structure and contents of the main configuration file

config.xml.

	 3.	 Using the pack command create a domain template and a

managed server template from the created domain.

	 4.	 Using the configuration wizard, use the domain template just

created with the pack command to create a new domain, adding

the definition of a second cluster comprised of two additional

managed servers.

	 5.	 Use the readTemplate() function and explore the representation of

the domain template in WLST.

�Certification Questions

	 1.	 How many servers can be designated as administration servers in

a domain?

a.	 One and only one

b.	 More than one

c.	 Two

d.	 Any

	 2.	 Each managed server in a domain requires its own product

installation to run.

a.	 True

b.	 False

Chapter 3 Domains

41

	 3.	 Is it possible to run more than one domain in a single host?

a.	 True

b.	 False

	 4.	 What format is used to persist the domain configuration?

a.	 A database schema

b.	 A set of XML files

c.	 In-memory

	 5.	 Select the tools that enable domain configuration and

customization:

a.	 The configuration wizard

b.	 The administration console

c.	 WLST

d.	 The pack and unpack commands

e.	 All of the above

�Coming Up
Once a domain has been created, its servers are ready to be started and used. Before this,

it is important to review the purpose and configuration of the node manager component

as it is required to enable communication between the administration server and the

managed servers. Node manager is the subject of the next chapter.

Chapter 3 Domains

43
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_4

CHAPTER 4

Node Manager
Oracle WebLogic Server Node Manager is an optional but recommended WebLogic

Server utility. Any domain configuration that defines at least one managed server will

benefit from configuring and using Node Manager to control server start and shutdown,

including automatic restart.

In this chapter we first look briefly at the components that interact with Node

Manager at the domain level and thoroughly discuss its configuration options. We end

this chapter by reviewing the most common operations performed by Node Manager.

�Overview
Oracle WebLogic Server Node Manager comes in two versions, one Java-based and one

script-based. Both serve the same purposes but the Java-based version is, by far, the one

used most commonly. It is actually the default version in WebLogic Server 12c and has

had its configuration significantly simplified. Some of the recommended practices to

managing Node Manager in previous WebLogic Server versions have now become the

default practices, including the scope in which Node Manager is used.

A new screen is part of the WebLogic Server 12c configuration wizard that requires

selecting the node manager type and credentials1. If administrators select per-domain

Node Manager, as opposed to choosing manual setup, the wizard will create a default

configuration that is ready for immediate use. This configuration is complete with

security credentials, configuration properties, domain association and control scripts

already in the right place, all of which and more was commonly manually performed

by administrators of previous product versions. Figure 4-1 displays the Node Manager

screen from the WebLogic Server Configuration Wizard.

1�The semantics for type in the said screen is that of the WebLogic Server managed beans and
defines whether the domain is configured per-domain or per-host, rather than reference its
implementation.

44

As indicated previously, the default Node Manager version is implemented in

Java and runs as a JVM process just like servers do, although it is by default configured

to have a much smaller foot print on the system. The main configuration of the

Java Node Manager is kept in a properties file. It supports one-way SSL to secure its

communications with other domain components.

The script-based Node Manager is implemented in UNIX/Linux shell scripts and

depends on SSH for security and communications. This makes the Java-based Node

Manager the only alternative in Windows environments.

�Node Manager Interactions
Once configured, Node Manager can be used to start and control any of the servers in the

same WebLogic machine in which it resides, including the Administration Server. Node

Manager will then also be able to receive requests from the Administration Server to

perform control commands on the managed servers. These requests may have originated

Figure 4-1.  Configuration Wizard Node Manager screen

Chapter 4 Node Manager

45

in the Administration Console or come from other JMX clients. Figure 4-2 shows a diagram

of the components with which Node Manager interacts, and the flow of communication.

The following interactions are displayed in the diagram:

	 1.	 An administrator connects to Node Manager using WebLogic

Scripting Tool.

	 2.	 Node Manager may directly start, stop, and restart any WebLogic

server instances in the same machine.

	 3.	 The Administration Server will contact Node Manager with

control requests to be performed on managed servers.

	 4.	 The Administration Server will contact managed server instances

directly, in order to perform graceful shutdown operations2.

2�Graceful shutdown procedures transition a server instance through a series of states, from
running to shutdown, by allowing existing HTTP sessions to be terminated gracefully over a
configurable length of time.

Node Manager
Logical View - Single Host

ManagedServer

Machine

Host

1

2

3

4

6

5

Domain

ManagedServerN

AdminServer
Admin
Console

JMX
Client

NodeManagerWLST

Figure 4-2.  Node Manager logical view in a single-host domain
configuration

Chapter 4 Node Manager

46

	 5.	 The Administration Console can be used to request control

operations on managed servers.

	 6.	 Custom JMX clients can connect to the Administration Server in

order to request control operations on managed servers.

Node Manager functionality goes beyond facilitating control of local server

instances; it is even more important for domains containing clusters that are

distributed across more than one host. Such is the common topology used in

production environments. Figure 4-3 shows a diagram of how Node Manager is used

to control server instances that are remote to the Administration server, and the flow of

communication.

Node Manager
Logical View - Multiple Hosts

WLST NodeManager

NodeManagerN

ManagedServer

ManagedServerN

AdminServer
Admin

Console

Machine 1

Machine N

31

2

Domain
Host N

Host 1

JMX
Client

Figure 4-3.  Node Manager logical view in a multiple-host domain
configuration

Chapter 4 Node Manager

47

Besides the interactions shown in the previous diagram, the following interactions

are depicted:

	 1.	 An Administration Server will contact a remote Node Manager

process over a network channel, with control requests to be

performed on remote managed server instances.

	 2.	 The remote Node Manager process may directly start, stop, and

restart any WebLogic server instances local to the same machine

in which it resides.

	 3.	 The Administration Server will also attempt to contact managed

server instances directly, in order to perform graceful shutdown

operations3.

�Configuration
There are two configuration modes available for Node Manager: per-domain and per-

host. The default configuration mode is per-domain. Even though the per-host mode is

still available, even in previous versions, Node Manager was commonly configured on

a per-domain basis. The per-host configuration enables using a single Node Manager

process to manage server instances and machines that belong in different domains. It

appears that the per-domain configuration trend was known to Oracle as it streamlined

its configuration and made it the automatic and default choice.

Since the per-domain configuration of the Java-based Node Manager is the default

choice, and in practice it is commonly used, this chapter will devote most of the

remaining content describing this approach.

The configuration process prepares the files that contain the information that will

be used at runtime to determine how to bootstrap the Node Manager JVM itself, how to

initialize server instances, and how to connect to them, as well as how to authenticate

users who request to perform control operations.

As explained before, Node Manager is automatically configured and is readily

available by simply opting for per-domain configuration, providing credentials and

3�If an Administration Server does not succeed in contacting a managed server directly, it will fall
back to request Node Manager to perform a non-graceful shutdown operation instead.

Chapter 4 Node Manager

48

defining a WebLogic machine. The settings created by this automated configuration

may also be manually overridden by running a few commands in a WLST session, or by

modifying the corresponding screens using the Administration Console.

�Automatic Configuration
The automatic Oracle WebLogic Server Node Manager configuration performed by the

domain configuration wizard defines that the JVM process will listen for requests on

localhost, port 5556. While defining the machine in the same configuration wizard, it

is possible to change this to a DNS name or IP address and port number combination.

This piece of configuration information must match exactly the CN field of the SSL/TLS

certificate used by Node Manager.

The default configuration automatically associates Node Manager to the domain in

question, meaning that Node Manager will be authorized to perform control operations

on all server instances that belong to it. This is done by creating a file that maps the

domain names to their root directories.

The credentials entered will be encrypted and saved to file system. Remote Node

Manager processes are only authorized to perform operations on server instances on

behalf of the Administration Server after propagating these credentials to them. This is

done by running the nmEnroll command in WLST.

Thus, a Node Manager client will only be authorized to perform control operations if

the user is successfully authenticated and if the server instance in question belongs to a

domain registered in the Node Manager configuration.

By default, Node Manager is configured to use SSL with demonstration certificates

which must be replaced with custom certificates 4. The demonstration certificates must

never be used in production environments. Even though it is highly insecure and not

advisable even for non-production environments, it is possible to disable using SSL in

Node Manager communication channels altogether.

There are several additional pieces of configuration automatically created by

the configuration wizard. These include other default settings such as the properties

required to start a server for the first time. A full description of the configuration files

appears in this chapter in subsequent sections.

4�In corporate environments, there is usually a group or individual in charge of issuing SSL
certificates. This entity is commonly an intermediate CA of a trusted CA. If this is not available
for your environment, and for training or other non-production purposes, the alternative is to
use self-signed certificates.

Chapter 4 Node Manager

49

�Manual Configuration
An administrator may use Oracle WebLogic Server Scripting Tool to configure or

reconfigure Node Manager settings that were automatically created by the configuration

wizard. This is one alternative to perform the configuration if manual node manager was

selected in the configuration wizard.

As indicated before, WLST allows navigating the managed beans structure that

represents a domain configuration5. The following example, Listing 4-1,

will set or modify Node Manager listen address and port, type, and credentials of a

domain named “sample,” created at the following location: “/opt/oracle/domains/

sample”. Other Node Manager properties are available readable and writable at the same

managed beans location.

Listing 4-1.  Manual Node Manager configuration

cd ORACLE_HOME/oracle_common/common/bin

./wlst.sh

readDomain("/opt/oracle/domains/sample")6

cd("/")

cd("NMProperties")

set("ListenAddress", "127.0.0.1")7

set("ListenPort", 7001)

cd("/")

cd("SecurityConfiguration/sample")

set("NodeManagerUsername", "nodemanager")

set("NodeManagerPasswordEncrypted", "newPassw0rd")8

setOption(“NodeManagerType", "PerDomainNodeManager")

updateDomain()

5�The WebLogic Server managed beans structure can be navigated using commands such as cd, ls,
and pwd, much like those found in file systems in a UNIX command shell.

6�The absolute path to the domain home was selected at the time the domain was created using
the Configuration Wizard. If no custom path for the DOMAIN_HOME was specified, the location
will be ORACLE_HOME/user_projects/domains/DOMAIN_NAME.

7�The listen address for a server can be either the DNS name, the hostname, or the IP address of
the machine where the server will run.

8�Despite the name of the property, the password here can be entered in plain text, and WebLogic
Server will take care of storing it encrypted.

Chapter 4 Node Manager

50

�Structure and Properties
Oracle WebLogic Server Node Manager maintains its configuration in several files. It will

also depend on several files created for each server instance it will control. Similarly, the

Node Manager process will write in a dedicated log file and will also keep a log file for

each server instance.

�Configuration Files
Node Manager maintains the following configuration files:

•	 nodemanager.properties – This is the main Node Manager

configuration file

•	 nm_password.properties – This file contains the encrypted node

manager credentials

•	 nodemanager.domains – This file contains the names and locations

of the associated domains

•	 nodemanager.process.id – This file contains Node Manager OS

process ID

•	 nodemanager.process.lck – This file represents an internal Node

Manager lock

Node Manager will create or otherwise use the following files for each server

instance:

•	 boot.properties – This file contains user credentials used by Node

Manager to start this server

•	 startup.properties – This file maintains the server startup properties

last passed to Node Manager by the Administration Server9

•	 SERVER_NAME.lck – This file contains an internal Node Manager

lock ID

9�These properties correspond to the server startup attributes found in the ServerStartMBean
managed bean.

Chapter 4 Node Manager

51

•	 SERVER_NAME.pid – This file contains the corresponding server

instance OS process ID

•	 SERVER_NAME.state – This file contains a string describing the

internal server state

�Log Files
Node Manager maintains the following log files:

•	 nodemanager.log – This file contains entries for events and

operations made on server instances of the associated domains, such

as when a server is started, stopped, or shut down. It also includes

entries for other node manager events, such as when Node Manager

detects that a server has failed.

•	 SERVER_NAME.out – This file is created by Node Manager when it

starts a server instance. It contains entries for both standard out and

standard error messages.

The contents of these files are also accessible using the Administration Console

or the WLST nmLog and nmServerLog commands. The default operation is for Node

Manager to append to these files although configuring rotation is possible. Server

instances create and maintain their own log files, in addition to those created by Node

Manager.

�File Locations
The location of the Oracle WebLogic Server Node Manager configuration files

depends on the type of node manager selected in the domain configuration wizard. As

expected, when working with a domain that has a default, per-domain node manager

configuration, the configuration files can be found under the domain root directory,

whereas with a per-host node manager configuration, the corresponding files are located

under the product home root directories.

Chapter 4 Node Manager

52

The exact location of the configuration files for a per-domain Node Manager

configuration is:

•	 nm_password.properties – DOMAIN_HOME/config/nodemanager

•	 nodemanager.properties & nodemanager.domains – DOMAIN_

HOME/nodemanager

•	 startNodeManager.sh & stopNodeManager.sh – DOMAIN_HOME/bin

The exact location of the configuration files for a per-host Node Manager

configuration is:

•	 nodemanager.properties & nodemanager.domains – ORACLE_

HOME/oracle_common/common/nodemanager

•	 startNodeManager.sh & stopNodeManager.sh – ORACLE_HOME/

wlserver/server/bin

�Properties
As indicated before, the properties that control how Node Manager performs its work

are found in the nodemanager.properties file. These properties may also be overridden

at the command line when creating the Node Manager process. A listing of the core

properties and an explanation of their purpose follow:

•	 ListenAddress – DNS name or IP address on which the Node

Manager process will listen for requests, default value: localhost

•	 ListenPort – Port number on which the Node Manager process will

listen for requests, default value: 5556

•	 LogFile – Location and name of the file where the Node Manager

process will write its messages, default value: DOMAIN_HOME/

nodemanager/nodemanager.log

•	 LogLimit – Maximum size of the log file when using log rotation,

default value: 0

•	 LogCount – Maximum number of log files to keep when using log

rotation, default value: 1

Chapter 4 Node Manager

53

•	 LogAppend – Whether to append to an existing log file when the

Node Manager process starts, default value: true

•	 LogLevel – Verbosity of the messages written by log manager, default

value: INFO

•	 CrashRecoveryEnabled – Whether or not attempt to restart a failed

server instance, default value: false

•	 StartScriptEnabled – Whether to use a specific script to start server

instances, default value: true

•	 StartScriptName – Name of the script that will be used to start server

instances, default value: startWebLogic.sh

•	 StopScriptEnabled – Whether to use a specific script to stop server

instances, default value: false

•	 DomainsFile – Location and name of the file that contains the

associated domain names and locations

•	 DomainRegistrationEnabled – Whether to accept dynamic domain

associations from node manager clients, default value: false

•	 AuthenticationEnabled – Whether to authenticate clients against the

domain, default value: true

•	 NativeVersionEnabled – Whether to use native libraries in the Node

Manager process, default value: true10

•	 StateCheckInterval – The length of time that Node Manager will wait

to check the state of server instances it started, default value: 500

(milliseconds)

•	 NodeManagerHome – Location and name of the directory where the

configuration and log files are stored

•	 JavaHome – Location and name of the directory where the JDK is

installed

10�It is strongly advisable to maintain the value of NativeVersionEnabled set to true as changing it
will limit the ability of Node Manager to recognize the status of a server instance process and to
recover crashed instances.

Chapter 4 Node Manager

54

•	 SecureListener – Whether to use SSL/TLS on the network channel,

default value: true

•	 Keystores – Indicates the type of keystore configuration

that Node Manager will use, available values are the

same of a server instance: DemoIdentityAndDemoTrust,

CustomIdentityAndJavaStandardTrust,

CustomIdentityAndCustomTrust

•	 JavaStandardTrustKeyStorePassPhrase – The password

required, if any, by the underlying Java trust keystore.

Required when the SSL keystores configuration is set to

CustomIdentityAndJavaStandardTrust

•	 CustomIdentityKeyStoreFileName – Location and file name

of the Node Manager identity certificate that contains its

private key. Required when the SSL keystores configuration

is set to CustomIdentityAndJavaStandardTrust or

CustomIdentityAndCustomTrust

•	 CustomIdentityKeyStorePassPhrase – Password to the

keystore that contains the identity certificate private

key. Required when the SSL keystores configuration

is set to CustomIdentityAndJavaStandardTrust or

CustomIdentityAndCustomTrust

•	 CustomIdentityPrivateKeyPassPhrase – Password to

access the private key from the identity certificate.

Required when the SSL keystores configuration

is set to CustomIdentityAndJavaStandardTrust or

CustomIdentityAndCustomTrust

•	 CustomIdentityAlias – String used to refer to the private key in the

identity keystore, defined when the private key was first loaded into

the keystore

Chapter 4 Node Manager

55

�SSL Configuration
As stated in the beginning of this chapter, the automatic configuration installs and

configures SSL demo certificates to encrypt Node Manager traffic. In general terms, SSL

uses public key encryption, which requires a key pair, a private key, and a public key. Data

encrypted using the public key can only be decrypted using the private key. In this scenario,

a key pair must be generated and configured for Node Manager. The public key contains

information about the owner, such as its DNS name or IP address in the CN field. The public

key is embedded in a digital certificate, and the private key along with the digital certificate

comprise the server identity. The data embedded in the digital certificate is verified and

signed by a certification authority that is commonly well known and trusted. Anyone who

trusts the certificate authority will also trust the digital identity of Node Manager.

As indicated before, Node Manager is configured with one-way SSL, meaning that

Node Manager will present its digital certificate to clients, but clients will not be required

to present their digital identity in a certificate. The Node Manager digital identity will

be used to encrypt Node Manager traffic. At this point, it should be fairly obvious that

maintaining the demonstration SSL certificates configured by default should be replaced

with a custom digital identity for Node Manager.

Obtaining digital certificates in established corporations is usually as simple as

requesting them from the group that is in charge of generating them. When this is not

available, it is also possible to generate the digital identity certificates and also sign them.

In terms of the technologies involved, this can be just as secure as having a well-known

and trusted certificate authority sign them, but the certificates thus signed will not be

trusted by anyone. For training purposes, this should be enough. In this book we will

not go into the details of creating a CA, generating the digital identity, and signing it,

but we will assume that the digital certificate is already available. In order to replace the

demonstration certificate with a custom identity certificate, the following steps should

be followed:

	 1.	 Set the Keystores property to one of the custom

options: CustomIdentityAndJavaStandardTrust or

CustomIdentityAndCustomTrust.

	 2.	 Set the values of the CustomIdentityKeyStoreFileName and

CustomIdentityKeyStorePassPhrase properties to the name and

location of the keystore that contains the private key as well as its

corresponding password.

Chapter 4 Node Manager

56

	 3.	 Set the value of the CustomIdentityPrivateKeyPassPhrase and

CustomIdentityAlias properties to the password to the private key

and the alias name which was used when populating the keystore

with the private key.

Choosing Java standard trust over custom trust essentially means that we will use

the trust keystore that was provided as part of the Java SDK that we are using11. This

keystore has been populated with the identity certificates of many well-known certificate

authorities. It is however not very relevant to the Node Manager SSL configuration as we

do not need to use these certificates to authenticate and trust client certificates.

If we choose to customize trust as well, we will need to provide a keystore location

and file name that must be populated with the identity certificates of the certificate

authorities whose signed certificates we choose to trust.

If we choose to use the Java standard trust, we must set the corresponding password

in the JavaStandardTrustKeystorePassPhrase property. The well-known password of the

cacerts keystore is, not surprisingly: changeit.

�Operation
As explained throughout the chapter, Node Manager enables an administrator to start

server instances both locally and remotely, to constantly monitor their state, and to

automatically restart them when they crash. This is a very important feature for Oracle

WebLogic Server production environments that are commonly required to stay up and

running at all times. Node Manager also plays a role in more advanced WebLogic Server

functionality such as what is termed Whole Server Migration, which further enhances

the availability of a domain by migrating server instances from a failed host to a healthy

one. It is also a recommended practice to leverage Node Manager for regular operations

on server instances.

Each host participating in a domain should be configured to run Node Manager

as an operating system service. For hosts running Microsoft Windows, this can be

performed by simply running the installNodeMgrSvc.cmd script12. There is also a

corresponding uninstallNodeMgrSvc.cmd script.

11�The Java standard trust keystore of the Oracle JDK 1.7.0+ is located at JAVA_HOME/jre/lib/
security/cacerts.

12�The StartScriptEnabled and NativeVersionEnabled properties of the Java-based Node Manager
are not supported on Microsoft Windows.

Chapter 4 Node Manager

57

For UNIX/Linux hosts, the startNodeManager.sh and stopNodeManager.sh

scripts are suitable to be invoked from init scripts, which enables Node Manager to be

effectively run as a UNIX/Linux operating system service.

The StartScriptEnabled and StopScriptEnabled properties in the configuration

allow customizing the events surrounding startup and shutdown of the Node Manager

process. This is useful in cases where, for example, a shared volume should be mounted

before the process is created, and unmounted after the process has exited.

In general terms, the custom start script would run the preparation tasks before

invoking the startNodeManager.sh script. Conversely, the custom stop scripts would first

invoke the stopNodeManager.sh script and then run the clean-up tasks.

�Start the Administration Server
The first step after a domain has been created and Node Manager has been configured

and started is to start the Administration Server. This is achieved by connecting to Node

Manager using WLST, and then having Node Manager start the Administration Server

instance.

Before actually creating corresponding JVM process, Node Manager will first use

its registered domains file (nodemanager.domains) to determine the domain root

location; it will then authenticate the administrator using the credentials provided

against those available in the domain in encrypted format, and it will determine

the initial startup properties. The following WLST example, Listing 4-2, commands

perform this process on a sample domain that has Node Manager configured to

listen on the default port:

Listing 4-2.  Start the Administration Server

cd DOMAIN_HOME/bin

./startNodeManager.sh &

cd ORACLE_HOME/oracle_common/common/bin

./wlst.sh

nmConnect("nodemanager", "newPassw0rd", "127.0.0.1", "5556", "sample", "/

opt/oracle/domains/sample", "ssl")

nmStart("AdminServer")

Chapter 4 Node Manager

58

�Start Managed Servers
Once the Administration Server has started, it is a trivial step to start the managed

servers configured to run on the same WebLogic Server machine as the command is

the same that was used to start the Administration Server, just passing the name of a

managed server instead. Before creating a managed server instance, Node Manager will

obtain the corresponding startup properties from the Administration server.

Managed servers will be started using the same root directory as Node Manager.

When no root directory is explicitly specified, the domain root directory is used by

default in a path such as: DOMAIN_HOME/servers/SERVER_NAME.

�Automatic JVM Restart
Node Manager is able to restart crashed server instances as long as both of the following

conditions are met:

	 1.	 They must have been started using Node Manager

	 2.	 The CrashRecoveryEnabled property in Node Manager or the

AutoRestart attribute in the server instance are enabled

The need to restart a server instance is determined by checking the JVM process

exit code or its last known state, both of which are tracked by Node Manager. Managed

server instances contact the Administration server to obtain a copy of the latest domain

configuration. If the managed server is unable to contact the Administration server

for this purpose, it will start in Managed Server Independence mode if enabled in

the domain, which as the name suggests, will cause the server to continue operating

independently of the Administration server, using the last copy it received of the domain

configuration.

�Crash Recovery
Crash recovery is different from automatic JVM restart in that the Node Manager process

will attempt certain recovery actions immediately upon starting, including:

	 1.	 Check for any lock files created

	 2.	 If lock files exist but a process with the corresponding ID does not,

Node Manager will attempt to restart the required server instances

Chapter 4 Node Manager

59

	 3.	 If the process ID exists, Node Manager will attempt to verify if

it belongs to a WebLogic Server JVM by attempting to access

an internal management servlet that is available in each server

instance; if it is not able to, Node Manager will attempt to restart

the required server instance

�Recommended Exercises
	 1.	 Run the Domain Configuration Wizard and select the manual

node manager setup option, then configure Node Manager

manually using WLST.

	 2.	 Configure Node Manager timed log rotation with a short duration

and verify that new log files are created.

	 3.	 Configure Node Manager on a non-default listen address

and port.

	 4.	 Enable server restart in the Node Manager configuration and

kill a managed server instance to force Node Manager to restart

the JVM.

	 5.	 Customize the Node Manager SSL configuration using custom

identity certificates.

	 6.	 Create init scripts to configure Node Manager to run as a service

on UNIX/Linux.

�Certification Questions
	 1.	 What are the two Node Manager implementations available on

WebLogic Server 12c?

a.	 Java-based and script-based

b.	 Java-based and Windows-based

c.	 Windows-based and UNIX/Linux-based

d.	 Java-based and Bash-based

Chapter 4 Node Manager

60

	 2.	 WebLogic Server Node Manager can control server instances in

more than one domain.

a.	 True

b.	 False

	 3.	 Select the supported options to secure Node Manager traffic:

a.	 One-way SSL

b.	 Two-way SSL

c.	 Passphrase

d.	 SSH

e.	 All of the above

	 4.	 Node Manager is capable of automatically restarting any

WebLogic Server instance.

a.	 True

b.	 False

	 5.	 What is the WLST command to configure Node Manager on

multiple WebLogic Server machines?

a.	 configure()

b.	 createConfig()

c.	 nmAuthorize()

d.	 nmEnroll()

�Coming Up
After learning how to configure Node Manager and how to use it to start and

automatically restart server instances, it is now time to review the details of how a server

instance JVM is configured. Servers are the subject of the next chapter.

Chapter 4 Node Manager

61
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_5

CHAPTER 5

Servers
The central component of a WebLogic Server domain is a server instance, or more

specifically, a JVM that is running the WebLogic Server main class. In this chapter

we discuss in detail what options are available for an administrator to configure and

run such a server instance, both the default options, and how to customize the setup

process for cases when the standard procedure may not suit the needs of a particular

environment.

�Standard Startup
Notwithstanding the process that is followed to configure the environment to run an

Oracle WebLogic Server instance, either administration servers or managed servers, the

command that is issued to create the JVM is always the following:

java weblogic.Server

Programmers and system administrators that support the Java platform will quickly

recognize that this runs the Java program, which is part of the Java JDK that was installed

ahead of WebLogic Server. This command creates a Java virtual machine as an operating

system process and, by passing weblogic.Server as an argument, it runs the WebLogic

Server main class. The JVM requires additional information to determine where to find

the weblogic.Server class, its dependencies, and it also requires additional configuration

to work as expected by the designers of the weblogic.Server program. This information,

along with additional configuration details, is also supplied as part of the command in

the form of several system properties.

62

�Available Methods
A server instance is provided the essential information to run, including essential

configuration for any WebLogic Server JVM, as well as certain customizations to make it

run in the environment where it is created, through one of the following methods:

	 1.	 Using startup scripts

	 2.	 Using WLST and Node Manager

	 3.	 Using the Administration Console and Node Manager

All methods will come down to the same command invocation we just mentioned.

However, there are slight differences in the setup process, in other words, in the way the

command invocation is built.

The next few sections explore how the standard startup scripts provide the

required configuration information to create and run the JVM1. Understanding how the

command is built gives an administrator the ability to run server instances

manually2. This requires an administrator to also manually set all of the startup

configuration options, including both environment variables and system properties.

Understanding how to do this enables an administrator to also put these options

together in a custom script, which could then be used to also perform other preparatory

tasks before the actual command invocation. Even though this approach may be useful

in certain situations, Oracle reserves the right to make changes to the requirements of

the weblogic.Server class, for example, by removing or adding libraries to the classpath

as part of a product update, which would obviously break custom startup scripts.

Therefore, this information is intended to give administrators a better understanding

of the requirements to run a WebLogic Server instance, rather than substituting the

standard startup methods.

1�At runtime, a WebLogic Server instance accepts other configuration options than just those
provided at startup. These are additional options in general complement, rather than override,
the configuration options provided at startup.

2�Oracle recommends not to manually invoke java weblogic.Server to start server instances in
production environments.

Chapter 5 Servers

63

�Standard Scripts
When a WebLogic Server domain is created, it includes the following scripts3, which are

used in the standard process of starting and shutting down server instances:

•	 startWebLogic

•	 startManagedWebLogic

•	 setDomainEnv

•	 setStartupEnv

•	 setWLSEnv

•	 commEnv

The first four scripts are part of the domain configuration and are found in the

DOMAIN_HOME/bin directory, and the last two are located in the ORACLE_HOME/

wlserver/bin and ORACLE_HOME/wlserver/common/bin directories, respectively.

Figure 5-1 shows the order in which the standard scripts are invoked to build the

command to start a server instance.

3�Oracle provides scripts for both UNIX/Linux (*.sh) and Microsoft Windows (*.cmd)
environments.

Chapter 5 Servers

64

As shown on the left in the flow diagram, the standard server instance startup

process begins by invoking the startWebLogic script4. This script will in turn invoke

the rest of the scripts5 in a specific order to properly build the complete command and

set the required environment variables. On the right, the generic steps to successfully

configure and start a server instance are also listed. In other words, the steps on the right

roughly describe what those on the left perform.

4�The startWebLogic and startManagedWebLogic scripts do not require Node Manager to be running
in order to start server instances. The same is true of the WLST startServer command, which can
be used to start both administration and managed server instances. The startManagedWebLogic
scripts, however, require an administration server to be up and running before use.

5�Oracle advises against calling the setDomainEnv script directly.

WebLogic Server
Server Startup

Start Server

Yes No

Yes

No

Invoke start
WebLogic script Set CLASSPATH

Set PATH

Set System
Properties

Standard
Process

Sources
setDomainEnv

Sources
commEnv

Sources
setStartupEnv

User
Overrides

Sources
setUserOverrides

Run the
weblogic.Server

class

Figure 5-1.  Flow of invocation of standard server startup scripts

Chapter 5 Servers

65

The descriptions that follow do not list the actions performed in each line of each

of the standard scripts, but will rather just describe the actions that are considered

fundamental in building the configuration that will be used to start up server instances.

�The startWebLogic Script
There are actually two scripts named startWebLogic: one is located in the DOMAIN_

HOME directory and the other in the DOMAIN_HOME/bin directory. The first script will

simply set the DOMAIN_HOME variable and then invoke the second script.

The script starts by setting a user mask of 027, which means that all files created by

the JVM process will be fully accessible to the process owner, readable by the main group

to which the process owner belongs, and inaccessible to the rest of the world. Kudos to

Oracle for setting by default yet another best practice.

The script sets the DOMAIN_HOME, ensuring that is set for when the script in the

bin directory is called directly and then it sources the setDomainEnv script.

�The setDomainEnv Script
It starts by setting the WL_HOME variable to the absolute path of the ORACLE_HOME/

wlserver directory. It then sets the JAVA_HOME variable to the absolute path to the

JDK that was used to install WebLogic Server. It does this after evaluating several other

variables including those containing the JDK vendor name and the JVM type.

If the SERVER_NAME variable is not set, it will set it to the value of AdminServer.

This has the effect of WebLogic Server by default attempting to start an Administration

server unless explicitly told to start a managed server. The script will next process

any arguments passed to the script. If production is passed, the variable DOMAIN_

PRODUCTION_MODE is set to true. At this point, the script sources the commEnv script.

�The commEnv Script
The script checks whether both the WL_HOME and MW_HOME variables are set. If they

are not, it will display an error message and exit with a status code of 1. Then, if only

the MW_HOME has not been set, it will define it with a value of one directory above of

that which the MW_HOME directory points to and source itself again to ensure these

variables are set.

Chapter 5 Servers

66

�Resuming Execution of setDomainEnv
The script then sets the WLS_HOME variable to the value of the server directory under

the WL_HOME directory. After this, it evaluates several variables and at the end, if it

is a HotSpot JVM it sets the heap size to 256 megabytes minimum and 512 megabytes

maximum, as well as a permanent generation size of 128 megabytes minimum and

256 megabytes maximum. At this point the script sources the setStartupEnv and

setUserOverrides scripts if they exist.

�The setStartupEnv Script
The script sets the STARTUP_GROUP variable to AdminServerStartupGroup if the value

of the SERVER_NAME variable is AdminServer. Then, it will ensure that the POST_

CLASSPATH variable includes the following library:

WL_HOME/oracle_common/modules/com.oracle.cie.config-wls-online_8.1.0.0.jar

�The setUserOverrides Script
Near the end of the standard process shown in the flow diagram, an optional script

named setUserOverrides script may be invoked. The provision to have a WebLogic

Server instance automatically source this script when present is a very much appreciated

improvement in Oracle WebLogic Server 12c.

Creating a script with this name is actually the Oracle supported method to

customize the configuration and startup process of a WebLogic Server instance, as

opposed to modifying or substituting the standard startup scripts, for the reasons

explained before. A setUserOverrides can be used, for example, to include additional

libraries in the server classpath or to define the heap size of the JVM.

WebLogic Server administrators working with product versions prior to 12c resorted

to a similar approach to apply customizations, that is, creating a script that was simply

invoked from the right place in one of the standard startup scripts.

Since the invocation to source the setUserOverrides script has been made part of

setDomainEnv script logic, it will not be lost when the setDomainEnv script is replaced

by product updates, etc. Furthermore, the setUserOverrides script will be picked up by

the pack tool that is used to propagate domain configuration to other servers.

Chapter 5 Servers

67

A setUserOverrides script on Linux is implemented using shell scripting. The

following sample setUserOverrides.sh script can be used to set the heap size of the

JVM. The script simply appends our required options to the existing options defined in

the JAVA_OPTIONS variable:

Listing 5-1.  Sample setUserOverrides.sh script

#!/usr/bin/env bash

JAVA_OPTIONS="${JAVA_OPTIONS} -Xms4096m -Xmx4096m"

The sample code above will set the minimum and maximum heap size of all server

instances to 4 gigabytes.

�Completing Execution of setDomainEnv
The setDomainEnv script again resumes execution by setting the value of the MEM_ARGS

variable to the value of the USER_MEM_ARGS if it carries a value. It then adds the system

properties weblogic.home and wls.home to the JAVA_PROPERTIES variable. It also sets the

system property weblogic.management.server to the value of the ADMIN_URL variable.

After this, it will ensure that the POST_CLASSPATH variable includes the following library:

WL_HOME/server/lib/xqrl.jar

The script will then set the SERVER_CLASS variable to the value of weblogic.Server

and appends the value of JAVA_PROPERTIES to the JAVA_OPTIONS variable, and also

appends the system property weblogic.ProductionModeEnabled with a value of true

when the PRODUCTION_MODE variable also has a value of true.

If the variable WEBLOGIC_EXTENSION_DIRS is defined, its value will be added

to JAVA_OPTIONS using the system property weblogic.ext.dirs. The script will finally

ensure that the value of the CLASSPATH variable is set to the values of the PRE_

CLASSPATH, WEBLOGIC_CLASSPATH, and POST_CLASSPATH variables.

�Completing Execution of startWebLogic
At this point, the script sets the weblogic.management.username and weblogic.

management.password system properties to the values of WLS_USER and WLS_PW

respectively. At this point, the script will echo messages to display the values of MEM_

ARGS, CLASSPATH, and PATH.

Chapter 5 Servers

68

To conclude the server startup configuration, the script adds to JAVA_OPTIONS the

system properties launch.main.class to the value of SERVER_CLASS, launch.class.path

to the value of CLASSPATH, and launch.complete to the value of weblogic.store.internal.

LockManagerImpl.

The script will then echo messages to display the values of JAVA_HOME, JAVA_VM,

and java -version and the WebLogic Server invocation line, followed by the actual

command execution. Once the JVM has been created, the following message is shown in

the corresponding server log file:

<TIMESTAMP> <Notice> <WebLogicServer> <BEA-000360> <The server started in

RUNNING mode.>

Verifying that this message appears in the log file is one of several actions that an

administrator should perform to confirm that a server instance started correctly.

�Path, Classpath, and System Properties
As shown in previous sections, the standard configuration settings of a WebLogic

Server instance are defined in both, environment variables and system properties. In

a WebLogic Server instance, several system properties are defined that are product

specific. Other system properties and some environment variables are commonly

defined for any Java program. These include the PATH and CLASSPATH variables.

The PATH variable in WebLogic Server has the same purpose as it does in any non-

Java environment. It is defined to include a series of directories that contain binaries.

After setting this variable, such binaries will be conveniently available to be run without

having to type the full path to their location.

The CLASSPATH variable is defined specifically for every Java program. It is meant

to tell the JVM where to find the classes required to run an application of a certain type,

such as a WebLogic Server instance. CLASSPATH entries can include specific JAR files

or directories with wildcards to include files without stating their individual names. The

order in which CLASSPATH entries are included does matter in case of duplicate JAR

files. The first one that is found will be used and the rest will be ignored.

There are two simple ways to inspect the startup configuration of a server instance,

either looking at the corresponding server log file or by using a tool to interrogate the

JVM for these settings.

Chapter 5 Servers

69

As explained before, there will be messages that output the content of the PATH,

CLASSPATH, and JAVA_OPTIONS variable. This latter variable will include the system

properties and values that have been set.

There are several tools that can be used to interrogate the JVM such as jcmd and

jstat, both of which are included in the Oracle JDK. The jcmd tool is a pretty simple

but powerful tool6 for inspecting the JVM configuration and can also perform other

important tasks on the server process.

�Sample Configuration Values
The following are default PATH, CLASSPATH, and system properties as defined for

an administration server instance. These settings are essentially the same that an

administrator will find in a WebLogic Server environment whose configuration has not

been customized beyond the basic options available during domain creation.

The sample environment that produced these settings runs on Fedora Linux with

Oracle JDK 7 installed using the RPM package. Oracle WebLogic Server 12c is installed

at /home/gustavo/Mine/apress/lab/product, and the sample domain configuration is

located at: /home/gustavo/Mine/apress/lab/configuration/domains.

�Sample PATH Value
Listing 5-2.  Default value of the PATH variable from the log file of an

administration server

PATH=/home/gustavo/Mine/apress/lab/product/wlserver/server/bin:/home/

gustavo/Mine/apress/lab/product/wlserver/../oracle_common/modules/org.

apache.ant_1.9.2/bin:/usr/java/jdk1.7.0_80/jre/bin:/usr/java/jdk1.7.0_80/

bin:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/home/gustavo/.local/

bin:/home/gustavo/bin

The output above shows that among other entries, the location of the JDK binaries,

as well as the WebLogic Server binaries, are included in the value of the PATH variable.

These two are always required to run and manage server instances.

6�The jcmd tool is part of the Oracle JDK set of tools. Help is available by running: jcmd PID help
where PID is the number of a JVM process.

Chapter 5 Servers

70

�Sample CLASSPATH Value
Listing 5-3.  Default value of the CLASSPATH variable from the log file of an

administration server

CLASSPATH=/usr/java/jdk1.7.0_80/lib/tools.jar:/home/gustavo/Mine/apress/

lab/product/wlserver/server/lib/weblogic_sp.jar:/home/gustavo/Mine/apress/

lab/product/wlserver/server/lib/weblogic.jar:/home/gustavo/Mine/apress/lab/

product/wlserver/../oracle_common/modules/net.sf.antcontrib_1.1.0.0_1-0b3/

lib/ant-contrib.jar:/home/gustavo/Mine/apress/lab/product/wlserver/modules/

features/oracle.wls.common.nodemanager_2.0.0.0.jar:/home/gustavo/Mine/

apress/lab/product/wlserver/../oracle_common/modules/com.oracle.cie.config-

wls-online_8.1.0.0.jar:/home/gustavo/Mine/apress/lab/product/wlserver/

common/derby/lib/derbyclient.jar:/home/gustavo/Mine/apress/lab/product/

wlserver/common/derby/lib/derby.jar:/home/gustavo/Mine/apress/lab/product/

wlserver/server/lib/xqrl.jar

The code above shows that the CLASSPATH variable includes the following JAR files

by name:

•	 tools.jar

•	 weblogic.jar

•	 weblogic_sp.jar

•	 ant-contrib.jar

•	 com.oracle.cie.config-wls-online_8.1.0.0.jar

•	 oracle.wls.common.nodemanager_2.0.0.0.jar

•	 derbyclient.jar

•	 derby.jar

•	 xqrl.jar

The tools.jar file includes JDK tools and utilities. The weblogic.jar file contains

some of the core WebLogic Server classes. The weblogic_sp.jar file is automatically

included in the CLASSPATH by the commEnv script although it may not be present

in a WebLogic Server installation. Its purpose is to enable administrators to apply

Chapter 5 Servers

71

a product patch without having to update the domain CLASSPATH by renaming

the patch JAR file to weblogic_sp.jar and copying it to the WL_HOME/server/lib

directory.

The ant-contrib.jar file includes classes supporting Ant tasks that are used by

WebLogic Server. The com.oracle.cie.config-wls-online_8.1.0.0.jar includes classes that

are used by the configuration wizard. The oracle.wls.common.nodemanager_2.0.0.0.jar

obviously includes files that are used to support the Node Manager features. The

derbyclient.jar and derby.jar include the Apache Derby client. The xqrl.jar implements

XQuery support for WebLogic Server.

�How the CLASSPATH Is Built
In the sample system, the WebLogic Server classpath was built in the following specific

sequence:

	 1.	 The com.oracle.cie.config-wls-online JAR is added to the POST_

CLASSPATH variable in the setStartupEnv script

	 2.	 The derbyclient and derby JARs are added to the DATABASE_

CLASSPATH variable in the setDomainEnv script

	 3.	 The POST_CLASSPATH is appended values from the DATABASE_

CLASSPATH in the setDomainEnv script

	 4.	 The xqrl JAR is added to the POST_CLASSPATH in the

setDomainEnv script

	 5.	 The CLASSPATH variable is set to the value of the POST_

CLASSPATH variable in the setDomainEnv script

	 6.	 The WEBLOGIC_CLASSPATH variable is set to include the

following JARs: tools, weblogic, weblogic_sp, ant-contrib and

oracle.wls.common.nodemanager in the setDomainEnv script

	 7.	 The CLASSPATH variable is prepended the value of the

WEBLOGIC_CLASSPATH in the setDomainEnv script

	 8.	 The CLASSPATH variable is defined to the same value in the

startWebLogic script

Chapter 5 Servers

72

�Sample System Properties
Listing 5-4.  Default JVM flags and system properties from the log file of an

administration server

Starting WLS with line:

/usr/java/jdk1.7.0_80/bin/java -server -Xms256m -Xmx512m

-XX:CompileThreshold=8000 -XX:PermSize=128m -XX:MaxPermSize=256m

-Dweblogic.Name=AdminServer -Djava.security.policy=/home/gustavo/Mine/

apress/lab/product/wlserver/server/lib/weblogic.policy -Xverify:none

-Djava.endorsed.dirs=/usr/java/jdk1.7.0_80/jre/lib/endorsed:/home/

gustavo/Mine/apress/lab/product/wlserver/../oracle_common/modules/

endorsed -Xms4096m -Xmx4096m -da -Dwls.home=/home/gustavo/Mine/

apress/lab/product/wlserver/server -Dweblogic.home=/home/gustavo/Mine/

apress/lab/product/wlserver/server -Dweblogic.utils.cmm.lowertier.

ServiceDisabled=true weblogic.Server

The code above shows the following JVM flags:

•	 Xms and Xmx

•	 XX:CompileThreshold

•	 PermSize and MaxPermSize

•	 weblogic.Name

•	 java.security.policy

•	 Xverify

•	 java.endorsed.dirs

•	 wls.home

•	 weblogic.home

•	 weblogic.utils.cmm.lowertier.ServiceDisabled

The memory values shown in the previous listing are the standard values for an

Oracle HotSpot JVM running on a 64-bit Linux OS and represent the contents of the

MEM_ARGS variable in the standard scripts.

Chapter 5 Servers

73

The heap size is set to range from 256 megabytes up to 512 megabytes, with a

permanent generation size set to range from 128 megabytes to 256 megabytes. The

CompileThreshold option is a performance flag to indicate that there should be 8000

method invocations or code iterations before code compilation. These values can be

overridden in a setUserOverrides script. The actual heap size can be identified in the

subsequent Xms and Xmx definition, which takes precedence over the first. It can also

be reviewed by querying the JVM flags using the jcmd tool. The value of none in the

Xverify flag disables bytecode verification. The java.security.policy specifies the location

of the Java Security Manager policy file for WebLogic, which is the weblogic.policy file

located in the server/lib directory of the product installation. The java.endorsed.dirs

sets the location of the directory where libraries may be placed to override packages

in the JDK. The weblogic.Name system property is set to the server name, in this case

AdminServer. The wls.home and weblogic.home are both references to the WL_HOME

directory.

The complete list of system properties defined in a running server instance

the JVM may be obtained using a variety of methods, for instance, by using the

VM.system_properties option of jcmd.

�Additional System Properties
WebLogic Server defines a large set of additional system properties that can optionally

be used to configure a server instance at startup. These properties can actually be

used to override the server configuration that is kept in the domain repository. Unless

persisted in the config.xml file, these settings would only last until the server instance is

restarted.

As shown in Listing 5-4, these system properties are specified in the command line

using a capital D, followed by the property name and its intended value, such as:

-Dweblogic.Name=AdminServer

The following list of properties is a small subset of the full range of options available.

The purpose of each can be derived from their names:

•	 weblogic.Domain

•	 weblogic.ProductionModeEnabled

•	 weblogic.management.server

Chapter 5 Servers

74

•	 weblogic.Name

•	 weblogic.ListenAddress

•	 weblogic.ListenPort

•	 weblogic.ssl.ListenPort

•	 weblogic.security.SSL.minimumProtocolVersion

•	 weblogic.system.BootIdentityFile

•	 weblogic.log.FileName

•	 serverType

The weblogic.management.server specifies the URL that must be used to contact the

administration server in a given domain. The serverType property can take a value of wlx

in which case, the server instance will be a lightweight instance that will not load the EJB,

JMX, and JCA subsystems.

�Manual Startup
As indicated in the beginning of this chapter, starting an Oracle WebLogic Server

always invokes the Java command passing the weblogic.Server class. Doing so

without the proper startup configuration as discussed will result in a JVM process

created but that will not be able to properly function as a WebLogic Server instance

of any kind.

As shown, the classpath is comprised of the JAR files that are required by the

weblogic.Server class to perform its work. This set of JARs is subject to change,

potentially frequent change indeed – either by system administrators who include

additional JAR files to complement server functionality, connectivity, etc., or by Oracle,

in the form of product updates.

Product patches may add, substitute, or remove from this set of JARs at any time,

which appears to be the main reason for recommending administrators not to create

their own startup process for server instances, but rather work with the standard

process, customizing at the standard points, such as adding JAR files to one of the

several directories defined for this purpose, according to the required visibility

scope, or by implementing the changes in a setUserOverrides script.

Chapter 5 Servers

75

�Server Instance Selection
When the weblogic.Server command is run, it will always look for a domain

configuration in the standard location, meaning a directory named config that includes

a config.xml file. It will inspect this file and will run an administration server named

AdminServer if it is defined; otherwise it will run a server named myserver if it is defined.

If no config.xml file can be found at the expected location, the command will prompt

to create one. This configuration file will contain the definition of a single server instance

named myserver. The command will also prompt for basic configuration information to

customize this server instance, such as the required security credentials. The command

would then start this server as an administration server.

From this we can see that the weblogic.Server command will by default attempt

to start an administration server in an existing domain. If the environment where the

command is run does not point to an existing domain with an administration server

defined, then it will create one.

�Running the Command
In the context of all the information discussed in this chapter, a viable process to start a

server instance from the command line would be as follows:

	 1.	 Source the setWLSEnv script from the WL_HOME/server/bin

directory7.

	 2.	 Append additional entries to the CLASSPATH environment

variable to be at least what was described before8.

	 3.	 Identify the required system properties and values, according to

the function of the server instance that will be started.

	 4.	 Change to the DOMAIN_HOME directory and run the java

weblogic.Server command. The system properties defined must

be specified in the command line between the java and the

weblogic.Server words.

7�Just running the setWLSEnv script will not be enough, it must be sourced to the current
environment so that the environment variables defined will remain after the script has
completed. In Linux systems this can be accomplished in several ways, the simplest is perhaps
running: . ./setWLSEnv.sh, using a dot and a space before the script name.

8�This will require the values described in steps 1 through 5 of the “How the Classpath Is Built”
section in this chapter.

Chapter 5 Servers

76

As discussed before, depending on the values passed to the Java command, the

weblogic.Server program could actually be used to create a domain, since the program

will actually prompt to create a domain configuration when it is unable to find one in

the directory from where the command is run. This approach can only be used to create

domains with a single instance, and cannot modify existing domains.

In general, one should include properties to define the heap size at least as big as the

sample values shown above. If those settings are omitted, the JVM will very quickly run

into memory issues. If starting an administration server is planned, one should at least

include the weblogic.Name property as well. In addition, to start managed servers, the

administration server should already have been started, and the weblogic.management.

server property must also be included.

�Credentials
When a new domain is created, the administration credentials are provided,

encrypted, and saved. Each server instance will have a separate file whose contents

are encrypted and which cannot be reused across server instances. Each time a

server instance is started, the right credentials must be used. Depending on the

domain start mode, either development or production, these credentials must be

provided by pointing to the boot.properties file where they reside, or they must be

typed in the command line.

In Oracle WebLogic version 12.1.2 both username and password may be specified

using a pair of system properties. However, these properties have been deprecated

and they should not be used as they remain visible on the command-line invocation

throughout the life of the JVM process.

�Recommended Exercises
	 1.	 Using the standard process start both an administration server

and a managed server and review the contents of the CLASSPATH,

PATH, MEM_ARGS, and command line used.

	 2.	 Manually set the CLASSPATH and start both an administration

server and managed server passing the minimum necessary

system properties for a WebLogic Server instance.

Chapter 5 Servers

www.allitebooks.com

http://www.allitebooks.org

77

	 3.	 Implement a setUserOverrides script to customize the server

configuration.

	 4.	 Manually start a server instance and verify if it applies the

customizations from the setUserOverrides script.

�Certification Questions
	 1.	 A server instance may be started using several commands.

a.	 True

b.	 False

	 2.	 What is the name of the standard script to start a managed server

instance?

a.	 startServer

b.	 startWebLogic

c.	 startManagedServer

d.	 startManagedWebLogic

	 3.	 Which script sources the setUserOverrides script to apply

configuration customizations?

a.	 setDomainEnv

b.	 startWebLogic

c.	 startServer

d.	 None of the above

	 4.	 Oracle WebLogic Server provides standard server start scripts for

each supported platform.

a.	 True

b.	 False

Chapter 5 Servers

78

	 5.	 What is the correct method to add a library to a server instance

configuration?

a.	 The PATH

b.	 The CLASSPATH

c.	 A system property

d.	 All of the above

�Coming Up
In our next chapter, we will talk about the details of the configuration management

process in WebLogic Server, including how the underlying Java technology solves the

challenge of a file-based configuration repository, as well as what tools are available to

perform changes to the domain configuration.

Chapter 5 Servers

79
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_6

CHAPTER 6

Configuration
Management
All WebLogic Server domains drift from the original settings of its node manager and

server instances at one point or another. This obviously happens more frequently with

domains that are used for development and pre-production purposes, but the fact that it

also happens on production environments as well makes it critical to gain the necessary

understanding of the configuration management process.

In this chapter, we review the architecture of the components that represent the

configuration of a WebLogic Server domain at runtime, how changes to these are made,

persisted and distributed, as well as the tools available to perform configuration changes.

As explained in a previous chapter, the main domain configuration values are

maintained in the config.xml file located in the DOMAIN_HOME/config directory. This

config.xml file contains references to other XML files that describe the settings of several

WebLogic subsystems1. Together they comprise the domain configuration repository.

If we think about the distributed architecture of Java EE middleware systems,

such as WebLogic Server, where server instances are spread across multiple hosts,

and then we consider that the domain configuration repository is file-based, we

will quickly recognize that maintaining such configuration system presents an

important synchronization challenge. The solution to this lies in WebLogic Server

implementation and use of Java Management Extensions or JMX technology, to

manage the entire domain configuration.

1�Not every single configurable option can be found in the XML configuration files. WebLogic
Server will not explicitly state in these files its default configuration values.

80

�Java Management Extensions
Java Management Extensions is a management and monitoring technology. Oracle

WebLogic Server uses JMX for both purposes. Administrators use this technology all the

time while interacting with server instances.

JMX technology is a natural way to instrument manageability to Java applications. Its

architecture defines three tiers. The first tier contains the components, named managed

beans or MBeans, instrumenting the resources subject to monitoring and management.

The second tier is the MBean server or agent, which controls access to the MBeans.

The third tier enables remote client access to the MBeanServer through connectors or

adaptors, depending on the type of client.

JMX clients can be generic applications such as JConsole or Java Mission Control,

which come bundled with the Oracle JDK and can be used to manage JMX instrumented

applications, WebLogic Server included; or they can be custom built, such as a client

with an adaptor that enables access to the API to consume monitoring data in an SNMP

console.

Oracle WebLogic Server implements all three tiers. This implementation comprises

the tools and utilities through which a domain configuration is managed.

There are two main JMX clients included in all WebLogic Server installations:

WebLogic Scripting Tool or WLST, and the Administration Console. Although we

have briefly mentioned WLST in previous chapters, we will now describe in detail

its operation and scope. We will also review the main aspects and operation of the

Administration Console. Besides these two tools, WebLogic Server MBeanServer and its

collection of MBeans can interoperate with custom-built JMX clients.

�Architecture
An Administration Server in a WebLogic Server domain has two hierarchies of

configuration MBeans. Both of these sets resemble the domain configuration as

defined in the config.xml file structure. One of these hierarchies is used as a read-

only set of MBeans and contains the current configuration state of the domain. The

second hierarchy is editable, and is used as a staging area to perform configuration

changes. Likewise, Administration Servers will also maintain a second set of temporary

configuration files to keep track of the pending configuration changes as they occur.

Chapter 6 Configuration Management

81

Managed servers in a domain do not have an editable configuration MBean

hierarchy. Both administration and managed server instances also maintain a set of

runtime MBeans that contain information about their runtime state.

During startup, Administration Servers will instantiate its configuration MBean

hierarchies from the values kept in its file-based configuration repository. Managed

Servers will contact the Administration Server to receive a copy of the latest domain

configuration files before instantiating its read-only hierarchy of configuration MBeans.

Once this process is complete, each server instance in a domain will have identical

information in-memory of the domain configuration.

Figure 6-1 illustrates the architecture of the JMX components and their relationship

to the configuration repositories in a WebLogic Server domain.

�Configuration Management
At runtime, JMX clients can modify the configuration MBeans maintained by the

Administration Server. As expected, a transactional process is in place to manage the

changes. This process involves a lock that clients must acquire to work on the editable

configuration and release once they are done.

The modifications performed will be saved to the Administration Server’s editable

hierarchy of configuration MBeans as well as to a set of temporary configuration files that

maintain the pending changes. Up to this point, a client may still roll back his changes,

which will simply remove them from both the editable MBean hierarchy and temporary

files, without affecting the runtime behavior of any of the server instances in the domain.

Configuration Management
Architecture

WLST

JMX
clients

Admin
Console

JMX Server JMX Server JMX Server JMX Server JMX Server

RW
Config

RO
Config

RO
Config

Runtime Runtime

Domain

AdminServer Managed Server

temp
files

config.xml config.xml

Figure 6-1.  JMX Architecture in a WebLogic Server domain

Chapter 6 Configuration Management

82

When clients request changes to be made permanent on the domain, a distribution

process named activation is triggered, during which an attempt will be made to

propagate the changes to all server instances across the domain. This involves sending

the updated configuration files to all managed servers and having them update their

configuration MBean hierarchies accordingly.

During the activation phase, a managed server receiving the updated configuration

may reject the changes because of perceived inconsistencies or other circumstances.

In these cases, changes will not be activated and the client that requested activation

will receive a notification of the activation error. Additional work might be required to

understand and resolve the inconsistency before attempting activation again.

Depending on the type of configuration data that is being modified, deleted, or

added, changes may be applied dynamically, immediately upon successful activation,

or when they are considered non-dynamic, they require a restart of the affected server

instances to become fully active.

The change process from the perspective of an administrator can then be

summarized as follows:

	 1.	 Use a JMX client to connect to the editable MBeans hierarchy in

an administration server.

	 2.	 Obtain a lock to edit the configuration.

	 3.	 Navigate to the required location in the hierarchy.

	 4.	 Make the necessary changes.

	 5.	 Save the changes made.

	 6.	 Verify that the changes made are correct.

	 7.	 Request activation of the changes made.

	 8.	 Release the edit lock.

At any time in steps 4 to 6, an administrator may undo the changes made in an edit

session. The edit lock acquired in step 2 will be retained by an administrator, even after

server restarts, if not explicitly released; therefore, common sense and good system

administration practices are in order around its use2.

2�The edit lock acquired by an administrator may be forcefully released by another administrator if
required.

Chapter 6 Configuration Management

83

The configuration management pattern discussed up to this point covers pretty

much any changes an administrator will perform on domain and server instance

configuration data. This means pretty much every topic we have discussed about

WebLogic Server administration in the preceding chapters.

�Administration Console
The Administration Console is a web application. It is a front end to a JMX capable

back end. As every WebLogic Server domain has an Administration Server, so every

Administration Server has an Administration Console.

It is perhaps the tool most widely used by administrators of WebLogic Server

domains. It has pretty good cross-browser support and has a pretty solid design, making

it easy for new administrators to get used to it. Despite its ease of use, it is pretty broad in

scope, covering many functions to manage domain configurations and to monitor server

instances.

The Administration Console is started by default and accessible via the host address

and port number configured when the domain was created. Its application context is /

console.

When running a domain in production mode, the Administration Console is

immediately accessible upon Administration Server start. When the domain is

configured to run in development mode, the Administration Console is deployed when

the server first detects that its context is requested.

If the administration server was configured with SSL, the corresponding port must

be used to access the Administration Console. If the SSL configuration is running with

the default values, which is with the SSL demo certificates, the browser will refuse access

with a warning stating that the certificates were issued by an unknown authority. As

mentioned in a previous chapter, this must be corrected by updating the configuration

with custom certificates that are issued by a well-known certificate authority3. Figure 6-2

shows the login page of the Administration Console.

3�Most organizations configure domains that reside in internal networks with self-signed
certificates, which are every bit as secure in terms of the encryption process.

Chapter 6 Configuration Management

84

The Administration Console may be used to configure and work with domain

components such as node manager; the administration and managed server instances;

and to create, modify, and delete individual components and the properties of these

components. It can also be used to access and view diagnostic information of the

running server instances.

�Security
The Administration Console in production systems is commonly protected by

creating the Administration Server in a host without direct access to the Internet, then

allowing access to it through a protected network only. It is not that uncommon to see

environments in which administrators have decided to create the administration server

in a DMZ. In environments like this, the Administration Console may be disabled when

not in use.

At the application level, the console leverages the domain security system4. The

domain security system architecture supports the definition of roles, groups, and users.

Authorization levels are defined at the role level, which are granted to groups. Users are

then added to a group whereby they inherit the corresponding authorization level.

4�The domain security system details will be reviewed in a subsequent chapter.

Figure 6-2.  Login page of the WebLogic Server Administration Console

Chapter 6 Configuration Management

85

When creating the domain, the credentials of a user are defined. A user is created

with those credentials in the Administrators group, which has the administration role.

Out of the box, the domain security realm includes four roles: Administrators,

Operators, Deployers, and Monitors, with matching groups. The monitor role is

commonly of special interest in production environments as it effectively allows read-

only access to the Administration Console.

�GUI Layout
The Administration Console GUI has three sections that are most frequently used when

working with the domain configuration: the Change Center, the Domain Structure, and

the Main Panel where the properties of the selected domain component are displayed.

Figure 6-3 shows the landing page of the Administration Console.

The Change Center is displayed on the upper-left corner of the GUI. It is used to

acquire or release the lock on the underlying editable MBeans hierarchy. From here, it is

possible to access a table that lists all changes made to the domain configuration. From

this table, it is also possible to either activate or undo all changes that have been made but

not yet activated, and to see which of those are non-dynamic and require a server restart.

Figure 6-3.  Landing page of the WebLogic Server Administration Console

Chapter 6 Configuration Management

86

The Domain Structure is displayed below the Change Center. It is implemented as a

tree structure that has the following main branches:

•	 Environment

•	 Deployments

•	 Services

•	 Security Realms

•	 Interoperability

•	 Diagnostics

The Environment branch enables access to the main domain components, such as

servers, clusters, and machines. The Security Realms branch contains by default a single

entry named myrealm, which provides access to the configuration of the security system.

As explained in the beginning of this chapter, the collection of configuration MBeans

is organized around a hierarchy. This same hierarchy is represented closely in the tree

available in the domain structure section.

The third section in the GUI of the Administration Console or Main Panel displays

the properties corresponding to the object selected from the Domain Structure tree. The

configurable properties available for a given configuration component may be larger

than what can be displayed in a single page. Therefore, the main panel organizes the

configuration properties in sections and displays them in a tabbed view.

Figure 6-4 shows the tabs available in the main panel of the Administration Console

when viewing the properties of the Administration Server.

The information in the main panel appears by default in form fields that are grayed

out and not editable, unless an edit lock is acquired.

Figure 6-4.  Tabbed access to groups of properties of the AdminServer in the
Administration Console

Chapter 6 Configuration Management

87

Again, depending on the domain component selected, the information available

may also appear split in two sections in the main panel, where the most common values

are readily shown in the upper part of the panel, with a secondary or advanced section

initially hidden from view, but accessible at the bottom of the page.

Figure 6-5 shows the link to display the advanced section available in the main panel

of the Administration Console when viewing the properties of the Administration Server.

�Configuration Management Using the Administration
Console
The Administration Console may be used to perform all types of changes to the domain

configuration from the simplest, involving just a dynamic property change, to the

most complex, including those that require the creation of multiple interdependent

components, such as creating a cluster made up of several new managed servers.

However complex the change at hand, the fundamental process to edit the configuration

remains the same.

The following is the list of actions that the configuration management process

involves when using the Administration Console, regardless of what change to the

domain configuration is involved:

	 1.	 Log in to the Administration Console using the credentials of a

user in the Administrators group.

	 2.	 Click on the Lock and Edit button in the Change Center.

	 3.	 Select the required domain component, etc., in the Domain

Structure tree.

	 4.	 Make the necessary changes to the properties displayed in the

Main Panel.

Figure 6-5.  Advanced Properties section of the AdminServer in the Administration
Console

Chapter 6 Configuration Management

88

	 5.	 Save the changes made by clicking on the Save button at the top or

bottom of the Main Panel.

	 6.	 Verify that the changes made are correct by reviewing the

messages displayed in the Main Panel.

	 7.	 Request activation of the changes made by clicking on Activate

Changes on the Main Panel.

	 8.	 For changes that are activated successfully, the edit lock is

released automatically.

Figure 6-6 shows the message of success in the Main Panel after activating a dynamic

change in a server configuration, along with the corresponding release of the edit lock in

the Change Center.

�WebLogic Scripting Tool
In previous chapters, brief mentions were made about the WebLogic Scripting Tool. It

was presented as an auxiliary tool to create and update domains when working in offline

mode, and as a JMX client when working in online or connected mode. It was introduced

as a tool capable of interpreting commands in Jython language as well as of executing

WebLogic Server specific methods, either interactively or from a script.

WLST supports Jython version 2.2 implementation of the Python language and

runs on the JVM. Even though it has more limited features than a full-fledged Python

interpreter, it covers pretty much all programming needs of WebLogic Server system

administrators.

Whereas the Administration Console provides a nice graphical user interface, is easy

to learn and comfortable for non-repetitive tasks, WLST is geared for automation.

Figure 6-6.  Message of successful activation of dynamic changes using the
Administration Console

Chapter 6 Configuration Management

89

WLST can obviously be used in one-time tasks, but when used to automate work

its real value becomes apparent. It is common to see experienced WebLogic Server

administrators performing most repetitive actions through a set of scripts they wrote

from scratch. Therefore, it is a good idea to spend time becoming familiar with Jython,

the WebLogic Server MBean hierarchies, and the WLST environment.

WLST is not part of a WebLogic Server domain. It is available in both UNIX/Linux

and Windows versions at the wlserver/common/bin path in every WebLogic Server

product installation directory. The following code shows how to run WLST, and it shows

its command prompt. The code below requires setting the ORACLE_HOME environment

variable first.

Listing 6-1.  Running WLST and its command prompt

cd $ORACLE_HOME/wlserver/common/bin

./wlst.sh

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline>

�Security
As indicated before, in order to work with WLST online, a connection to the

Administration Server must be established. The first action to secure the WLST

environment is to always use a network channel that is TLS protected for this

communication.

By default, when the administration server is configured to use SSL/TLS, it will

encrypt communications using the demonstration certificates issued by Oracle.

These certificates should be substituted. Failing to do so makes a WebLogic Server

domain prone to DOS or MIM attacks5. It is strongly recommended to replace these

demonstration certificates.

5�Two types of attacks that WebLogic Server may be subject to are DOS and MIM. The following
are two good introductory articles on them: https://www.arbornetworks.com/blog/asert/
ddos-attacks-on-ssl-something-old-something-new/ and https://en.wikipedia.org/wiki/
Man-in-the-middle_attack.

Chapter 6 Configuration Management

https://www.arbornetworks.com/blog/asert/ddos-attacks-on-ssl-something-old-something-new/
https://www.arbornetworks.com/blog/asert/ddos-attacks-on-ssl-something-old-something-new/
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

90

As explained before, this involves determining whether or not a CA is in place at

your organization. If there is one, an administrator will simply have to request custom

certificates for each of the hosts participating in the domain. If there is no internal CA,

the alternative is either setting up a CA, or acquiring certificates from a well-known CA.

Once the certificates have been acquired, the information regarding the

demonstration certificates in the domain configuration is simply replaced with the

information of the new certificates. This process can be performed using either the

Administration Console or WLST6.

Once the communication has been established securely with the Administration

Server, proper credentials must be provided to access the in-memory representation of

the domain configuration, for both reading and writing.

These credentials are exactly those used to log in to the Administration Console.

They reside in a realm in the WebLogic Server security subsystem. By default, these

credentials are defined when the domain is created. Additional users and credentials

may be created, as discussed in the beginning of this chapter.

After WLST validates the credentials provided, the required access level will be

granted, which means granting access to either the read-only or read-write MBean

hierarchies.

The following code shows a WLST session in which a connection to the

Administration Server is made using the connect() command.

Listing 6-2.  Connecting to an Administration Server

wls:/offline>connect("weblogic", "aPassw0rd", "127.0.0.1:7001")

Connecting to t3://127.0.0.1:7001 with userid weblogic ...

Successfully connected to Admin Server "AdminServer" that belongs to domain

"sample".

Warning: An insecure protocol was used to connect to the

server. To ensure on-the-wire security, the SSL port or

Admin port should be used instead.

wls:/sample/serverConfig>

6�The procedure to replace the demonstration certificates provided by Oracle will be reviewed in
detail in a subsequent chapter dedicated to review WebLogic Server security.

Chapter 6 Configuration Management

91

The WLST code prompt changes from wls:/offline> to wls:/sample/

serverConfig>, reflecting that the server is now connected to the server

configuration MBean hierarchy in our domain named sample.

In this example, a connection was established using an unprotected network

channel, and because of this we are shown a warning. When connecting using a TLS

protected channel, the warning is not displayed.

In order to successfully establish a secure connection between WLST and the

administration server using demonstration certificates, one must ensure that the system

property weblogic.security.SSL.ignoreHostnameVerification=true is set.

�Executing Commands
Once in the WLST prompt, either online or offline, we are able to execute commands

interactively; both Jython language commands and WebLogic Server specific functions

are available, and the output of such commands or functions is immediately displayed

on screen.

The quintessential Hello World! program in WLST is familiar to Python and Jython

programmers as it only involves calling the print() method and passing our message to

have it displayed to standard output. The following code (Listing 6-3) shows the output

of this example.

Listing 6-3.  WLST interactive Hello World! program

wls:/sample/serverConfig> print('Hello World!')

Hello World!

wls:/sample/serverConfig>

As we can see, WLST interprets the sentence, displays the result, and returns to the

command prompt, ready to receive additional commands.

WLST supports executing commands in a file, and there are two ways of doing

this, either by invoking the WLST script and passing the file name that contains the

commands as the first argument, or by entering interactive mode and executing the

Jython function execfile() and passing the same file name. In both cases, the file is

parsed and evaluated as a series of statements and are then interpreted.

When working with WLST online, choosing either scenario implies that an

administrator will connect to an administration server interactively and then execute

a batch of commands in a file, or that the connect statements will be included in

Chapter 6 Configuration Management

92

the file to be passed to WLST. This has obvious security implications. As usual, the

recommendation is that credentials should never be stored in plain text anywhere, ever.

The following code shows the same program as in Listing 6-3 but in batch mode.

The first line simply creates the batch Jython file with our Hello World program, and the

second passes our file to WLST to be run in offline mode.

Listing 6-4.  WLST batch Hello World! program

echo "print('Hello World! - batch')" > hello.py

./wlst.sh hello.py

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

Hello World! - batch

A third method to run commands in WLST, which is perhaps less practiced than

batch or interactive mode. This involves embedding the WLST interpreter using the

WebLogic Server class weblogic.management.scripting.utils.WLSTInterpreter in

a Java program. This scenario may be required when administrative actions must be

carried out as part of other Java applications. Additionally, WLST can also be invoked

from Ant tasks and as a Jython module, although these are simply variations of the

methods described.

�WLST Commands
The most common WebLogic Server specific commands in WLST can be grouped in the

following categories:

•	 Control – Connect and disconnect from administration servers and

edit domains in offline mode

•	 Tree – Used to switch between available MBean hierarchies

•	 Browsing – Used to navigate the MBean hierarchies

•	 Editing – Used to perform changes to the writable MBean hierarchy

Chapter 6 Configuration Management

93

•	 Life Cycle – manage the state of server instances

•	 Node Manager – Similar to life cycle commands, executed through a

running Node Manager instance

There are other types of commands such as those used for application deployment

and those used to obtain runtime information from a specialized WebLogic Server

monitoring subsystem called WLDF7.

In a somewhat logical order, an administrator will typically first choose the WLST

mode, depending on the task at hand, then select the right MBean hierarchy and will

start browsing and viewing or editing the MBean attributes available.

The domainConfig() and serverConfig(), as well as domainRuntime() and

serverRuntime() commands, will change the location to the read-only MBean

hierarchies representing the current domain and server configuration and runtime

information, respectively.

The edit() command will change the location to the read-write MBean hierarchy

where changes to the domain configuration may be performed. The startEdit()

command acquires the lock on the writable MBean hierarchy. All of these commands

are available only in WLST online mode.

Browsing the MBean hierarchies was designed to resemble navigating a UNIX/

Linux file system hierarchy where commands such as cd(), pwd(), and ls() offer the

expected behavior of changing to a specific path, displaying the current position, and

listing the objects available at the current position.

WLST also includes the special variable cmo, which stands for current management

object and which represents the current MBean instance. This variable is commonly

used, in connection with the most common editing commands such as set() and get()

to invoke the corresponding methods in the current MBean instance. The following

example from a WLST session that is already connected to an administration server can

be used to change the listen port of the administration server from default 7001 to 9999.

The example (Listing 6-5) includes changing to the editable MBean hierarchy, navigating

to the administration server MBean, and modifying the corresponding property.

7�Monitoring is the subject of the next chapter where the functionality offered by WLDF will be
reviewed.

Chapter 6 Configuration Management

94

Listing 6-5.  Changing the Listen Port of an Administration Server

wls:/sample/serverConfig> edit()

Location changed to edit tree. This is a writable tree with

DomainMBean as the root. To make changes you will need to start

an edit session via startEdit().

For more help, use help('edit')

wls:/sample/edit> startEdit()

Starting an edit session ...

Started edit session, please be sure to save and activate your

changes once you are done.

wls:/sample/edit !> cd('/Servers/AdminServer')

wls:/sample/edit/Servers/AdminServer !> print(cmo)

[MBeanServerInvocationHandler]com.bea:Name=AdminServer,Type=Server

wls:/sample/edit/Servers/AdminServer !> cmo.getListenPort()

7001

wls:/sample/edit/Servers/AdminServer !> cmo.setListenPort(9999)

wls:/sample/edit/Servers/AdminServer !> cmo.getListenPort()

9999

When working in batch mode, it is often useful to save the output of the commands

executed to a file for verification and analysis. This can be accomplished by calling the

commands redirect() and stopRedirect(). The redirect() command takes a file

name as an argument, and optionally an indication of whether to still display the output

of the commands.

In the example above, an administrator would still have to validate, save, and activate

the changes, using the corresponding validate(), save() and activate() commands,

in order for the change management process to be completed.

One final consideration regarding the WebLogic Server commands in WLST

has to do with reading and writing encrypted values, such as passwords stored in

MBeans8. The representation of an encrypted value in an MBean hierarchy is stored

as an encrypted byte array.

8�Encrypted MBean properties end with the suffix Encrypted, for example: SystemPassword
Encrypted of the AdminServer MBean of type Server.

Chapter 6 Configuration Management

95

In a previous chapter, it was stated that in WLST offline, encrypted values can be

edited by simply passing the new, un-encrypted string to the set method.

In WLST online, the special method encrypt() may be used to create an encrypted

byte array that can be set to an encrypted property of an MBean. The encrypt() method

requires the string to be encrypted, and the absolute path to the DOMAIN_HOME

directory. The following example shows how to encrypt the SystemPassword property in

the administration server MBean.

Listing 6-6.  Changing the encrypted SystemPassword of an Administration

Server

wls:/sample/edit/Servers/AdminServer !> set('SystemPasswordEncrypted',

encrypt('aNewPw0rd', '/home/gustavo/apress/lab/configuration/domains/

sample'))

�Configuration Management Using WLST
Regardless of whether WLST is being used interactively or in batch mode, the configuration

management process remains the same. The following is the list of actions involved when

using WLST online:

	 1.	 Connect to the administration server using the credentials of

a user in the Administrators group by calling the connect()

method.

	 2.	 Change to the writable MBean hierarchy by calling the edit()

method.

	 3.	 Acquire the lock on the MBean hierarchy by calling the

startEdit() method.

	 4.	 Select the required domain MBean, etc., by browsing to the

correct location using any of the browse commands available.

	 5.	 Make the necessary changes to the properties available by calling

the set() method or the exposed methods of the CMO.

	 6.	 Validate that the changes made are correct by calling the

validate() and/or showChanges() methods.

Chapter 6 Configuration Management

96

	 7.	 If necessary, revert the changes made by calling the undo() and/or

cancelEdit() methods.

	 8.	 Save the changes made by calling the save() method.

	 9.	 Request activation of the changes made by calling the activate()

method.

	 10.	 Release the lock on the editable MBean hierarchy by calling the

stopEdit() method.

The following is a complete change management example using WLST in which the

dynamic SSL listen port of a managed server is disabled.

Listing 6-7.  Disabling the SSL Listen Port of a managed server

./wlst.sh

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline> connect('weblogic','welcome1','127.0.0.1:7001')

Connecting to t3://127.0.0.1:7001 with userid weblogic ...

Successfully connected to Admin Server "AdminServer" that belongs to domain

"sample".

Warning: An insecure protocol was used to connect to the

server. To ensure on-the-wire security, the SSL port or

Admin port should be used instead.

wls:/sample/serverConfig> edit()

Location changed to edit tree. This is a writable tree with

DomainMBean as the root. To make changes you will need to start

an edit session via startEdit().

For more help, use help('edit')

You already have an edit session in progress and hence WLST will

continue with your edit session.

Chapter 6 Configuration Management

97

wls:/sample/edit !> startEdit()

Starting an edit session ...

Started edit session, please be sure to save and activate your

changes once you are done.

wls:/sample/edit !> cd('/Servers/mserver1/SSL/mserver1')

wls:/sample/edit/Servers/mserver1/SSL/mserver1 !> print(cmo)

[MBeanServerInvocationHandler]com.bea:Name=mserver1,Type=SSL,Server=mserv

er1

wls:/sample/edit/Servers/mserver1/SSL/mserver1 !> set('Enabled',False)

wls:/sample/edit/Servers/mserver1/SSL/mserver1 !> showChanges()

All changes that are made but not yet activated are:

MBean Changed : com.bea:Name=mserver1,Type=SSL,Server=mserver1

Operation Invoked : modify

Attribute Modified : Enabled

Attributes Old Value : true

Attributes New Value : false

Server Restart Required : false

wls:/sample/edit/Servers/mserver1/SSL/mserver1 !> validate()

Validating changes ...

Validated the changes successfully

wls:/sample/edit/Servers/mserver1/SSL/mserver1 !> save()

Saving all your changes ...

Saved all your changes successfully.

wls:/sample/edit/Servers/mserver1/SSL/mserver1 !> activate()

Activating all your changes, this may take a while ...

The edit lock associated with this edit session is released

once the activation is completed.

Activation completed

Chapter 6 Configuration Management

98

�Recommended Exercises

	 1.	 Using WLST online, change the non-dynamic property listen

address of the administration server.

	 2.	 Using WLST offline, change any encrypted property, verify that it

is stored encrypted.

	 3.	 Using WLST online, create a new managed server.

	 4.	 Using WLST offline, delete an existing managed server.

	 5.	 Verify in the Administration Console the effect of calling the

startEdit() method.

�Certification Questions

	 1.	 The edit lock on acquired on a WLST session is released

automatically when closing the session.

a.	 True

b.	 False

	 2.	 What is the group in the WebLogic Server security realm that

effectively has read-only access to the Administration Console?

a.	 Readers

b.	 Monitors

c.	 Watchers

d.	 All of the above

	 3.	 What types of configuration changes may be reverted in a

WebLogic Server domain?

a.	 Saved

b.	 Activated

c.	 None

d.	 All

Chapter 6 Configuration Management

99

	 4.	 What are the arguments to the encrypt() method to create

encrypted byte arrays in WLST?

a.	 String to encrypt

b.	 String to encrypt, encryption algorithm

c.	 String to encrypt, property to update

d.	 String to encrypt, domain path

e.	 None of the above

	 5.	 It is possible to automate all types of domain configuration

changes using WLST.

a.	 True

b.	 False

�Coming Up
In our next chapter, we will review the logging subsystem and WLDF, two excellent

alternatives to monitor and troubleshoot runtime behavior of domain components.

Chapter 6 Configuration Management

101
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_7

CHAPTER 7

Logging and Monitoring
All middleware environments eventually face circumstances that affect the availability

of their subsystems and of the applications running on them. Oracle WebLogic Server

administrators must anticipate these events by closely monitoring the behavior of the

JVM and reviewing the information available in log files, which can be useful before and

after these events occur.

In this chapter, we discuss monitoring and logging services, how server subsystems

use them, how to configure them, and how to access and interpret their messages.

�Logging
The fundamental purpose of logging is to provide a mechanism whereby which

information about certain events in a system can be broadcast and persisted for

interested parties to access and use.

Logging in Oracle WebLogic Server originates in various locations, including

server subsystems and deployed applications. The content in this section deals with

logging from the perspective of the server and its subsystems rather than from an

application. However, most of the information is applicable to application logging

as well.

102

In short, Oracle WebLogic Server subsystems produce log messages using an internal

framework1 and distribute them using Java APIs, either java.util.logging2 or Apache

Log4J3.

System administrators do not work directly with the logging APIs used by WebLogic

Server to produce and distribute messages, unless, for example, when they require a

custom output channel. However, gaining a good understanding of the role of these

components in the logging process provides a better comprehension of how logging

works in WebLogic Server, and how to properly configure them to suit the needs of a

particular environment.

Figure 7-1 shows that logging is a two-phase process. In the first phase log messages

are produced, and in the second phase log messages are distributed to the configured

output channels.

As shown above, WebLogic Server subsystems send log messages to Logger objects

that use Handler objects to distribute these messages to certain configured destinations,

such as log files.

1�WebLogic Server provides support for applications to produce messages and send them to the
server log without using its standard catalog.

2�The Java logging API URL is https://docs.oracle.com/javase/7/docs/api/java/util/
logging/package-summary.html.

3�The Apache Log4J open source project URL is http://logging.apache.org/log4j/.

WebLogic Server
Logging Components

Deployed
Application

WebLogic
Subsystem

1

2 3

4

5

Logger Handler

Log
File

Other

Figure 7-1.  WebLogic Server logging components

Chapter 7 Logging and Monitoring

https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html
http://logging.apache.org/log4j/

103

The points in Figure 7-1 highlight key logging components. First, the source (1) of

interesting events, and second, what logger (2) and handler objects (3) are available to

enable direct access to the messages produced through the required output channels

(4 and 5).

As indicated before, our analysis focuses on WebLogic Server subsystems logging.

Depending on the WebLogic Server features used in a particular environment, the server

log file will include logging messages from different subsystems such as, for example, the

core server subsystem, HTTP, EJB, JDBC, JTA, and JMS.

By default, a server instance is able to distribute messages to standard out, server

log files, the domain log file, memory buffer, and JMX. A server log file always contains

messages from all subsystems and deployed applications.

Rather than just opening a log file and start searching for relevant strings in the log

file, in order to understand the causes for a specific event, an experienced administrator

will have a certain expectation of what the system should do, how it should behave, and

will configure logging to contain precise and sufficient information about events where

the system deviates from the anticipated behavior. It will also forward relevant messages

through interesting channels.

�Loggers and Handlers
A quick look at the server log file of a WebLogic Server instance that has just started

up shows several different types of messages. For those particular messages to

have reached the log file, they must have first been handed to a pair of Loggers:

Message Catalog Logger and Server Logger, and must have been distributed by the

File Handler to the actual log file. All of this occurs as per the default server logging

configuration.

The association between loggers and handlers is made by subscription. Several

handlers may be interested in messages published by a particular logger and subscribe

to it. In fact, that is the default configuration for certain server messages that, in addition

to appear in the server log file, are also broadcasted to the domain log file.

Thus, a certain log message will reach a particular output channel if there is a

handler subscribed to the particular logger that will process it.

Both loggers and handlers use severity levels and filters to select the log messages

they are interested in processing. Handlers may also use additional objects such as

formatters and localizers to further process the log message.

Chapter 7 Logging and Monitoring

104

�Message Severity
The severity assigned to a message is an expression of the impact of the event on the

subsystem reporting it, going from the lowest level assigned to events occurring in

normal conditions; to the most critical, which often indicates service interruption or

meaningful failure.

The severity levels in WebLogic Server log messages are, from the highest impact to

the lowest are the following:

•	 Emergency

•	 Alert

•	 Critical

•	 Error

•	 Warning

•	 Notice

•	 Info

•	 Debug

•	 Trace

Note  Messages in severities notice and higher will, by default, always appear in
standard out.

When a subsystem is configured to output messages of severity trace, it will often

mean to produce very verbose output4. Most of the regular messages produced by a

subsystem occur in info and notice severity levels.

Messages in warning and error levels should always be of concern to administrators.

Messages of critical, alert, and emergency levels should never be disregarded as most of

the time they will mean that subsystem functionality has been impaired and that QoS

has been severely degraded.

4�In production systems, use the Debug and Trace logging levels with caution, keeping in mind
that the server will need to use much more resources than usual to process such levels of
verbosity.

Chapter 7 Logging and Monitoring

105

It is not uncommon that when users report service degradation or outright

disruption to a WebLogic Server administrator, messages of the three highest severity

levels will most certainly be found in the corresponding WebLogic Server log files.

An experienced administrator will therefore have special interest in any messages

in notice and warning levels as they could be used to prevent situations from escalating

and becoming critical issues.

�Message Attributes
The log messages produced by WebLogic Server subsystems contain several attributes.

An administrator will use the values of these attributes to select and filter out interesting

log messages. The following log message attributes are consistently available, regardless

of what subsystem produces the message:

•	 Timestamp

•	 Severity

•	 Subsystem

•	 Origin

•	 User ID

•	 Transaction ID

•	 Context ID

•	 Milliseconds

•	 Message ID

•	 Message text

The timestamp attribute contains the locale-formatted5 date and time when the

message was created.

The origin of the message includes the DNS name of the host, the server instance

name, and an ID of the thread where the message originated.

5�The JVM will resort to the OS configuration to determine the locale and format to use to display
the log message timestamp.

Chapter 7 Logging and Monitoring

106

Inclusion of transactional and contextual identifiers in the message is optional,

depending on whether the log message was created as part of a transaction and whether

or not correlation information is associated with the message.

The message ID is a six-digit identifier with a BEA- prefix. This ID is associated with

the WebLogic Server internal message catalog.

All of the previous message attributes may be considered metadata of the actual

event. Information is used to classify and persist the situation that occurred within a

server subsystem. The core event information an administrator is interested in is likely

contained within the last attribute, the message text.

Listing 7-1 is an example of a log message obtained from a domain log file that shows

in detail the message attributes discussed above. The four pound signs at the beginning

of the log message indicate that it originated in a server log file.

Listing 7-1.  Log message from a domain log file

####<Jan 14, 2017 3:34:04 AM CST> <Notice> <WebLogicServer> <redhat.

garnica.mx> <AdminServer> <[STANDBY] ExecuteThread: '2' for queue:

'weblogic.kernel.Default (self-tuning)'> <<WLS Kernel>> <> <>

<1484386444248> <BEA-000365> <Server state changed to STARTING.>

�Available Log Files
A WebLogic Server instance is configured to always work with at least one log file; this is

referred to as the server log file and can be considered the main log file for that particular

instance. Depending on the features in use in the server, there may be other log files

available.

In this file, an administrator can find information about the startup and shutdown

processes of the server instance, as well as an aggregation of messages from several

subsystems.

The server log file has the same name as the server instance by default. Both, the

server log file name and its location are configurable. The default location is the logs

directory in the server root, which is located in the servers directory in the domain root.

For example, in my local Linux environment, I have a domain named sample that has

a managed server named mserver1. Starting from the domain root, the path to the server

log file is:

sample/servers/mserver1/logs/mserver1.log

Chapter 7 Logging and Monitoring

107

By default, each server instance will also print a subset of its log messages with

severity NOTICE and higher to standard out. However, for instances started using Node

Manager, both standard out and standard error are redirected to a log file that is also

named as the server instance, but has an .out extension. Thus, if mserver1 server is

started using Node Manager, both log files, mserver1.log and mserver1.out, will be found

in the same logs directory6.

In addition to the server log file, some subsystems also maintain logs of their own

activity. The default location of these log files is also the logs directory specified above.

The logs of two subsystems are of interest to most WebLogic Server system

administrators: the HTTP and JTA subsystems.

The HTTP subsystem writes its messages by default to a log file named access.

log. This log file is useful to audit HTTP access to applications deployed on the server

instance, including internal applications such as the Administration Console. Its

messages are formatted differently from the server log file. Since the HTTP subsystem

works as an embedded HTTP server, its log file format resembles the log files of other

HTTP Servers such as Apache httpd or Nginx.

The following is an example message found in the access.log file in the

administration server of my local environment.

Listing 7-2.  Log message from the HTTP subsystem

127.0.0.1 - - [03/Dec/2016:00:50:39 -0600] "GET /favicon.ico HTTP/1.1" 404

1164

In this message, we see the IP address of the requestor, a timestamp, a string

containing the method used to perform the request, the resource requested, as well as

the HTTP version used. We also see the status code used in the HTTP response.

The JTA subsystem keeps a log of all transactions committed. This means distributed

transactions in which the server has taken part, and for which it has a confirmed

responsibility. Therefore, this is a critical log for the server to be able to recover from

catastrophic system failure.

6�Node Manager also keeps its own log file named nodemanager.log, located in the nodemanager
directory in the domain root. This file contains its own server startup and status messages

Chapter 7 Logging and Monitoring

108

Unlike other log files, JTA keeps this file in binary format. The location of the

transaction logs is specified as the default persistent store7, which takes a directory

location.

Other subsystems such as JDBC and JMS, when they are in use by the server, will also

maintain separate log files. Both of these subsystems will create directories in the logs

directory and will keep their log files in them.

Finally, one other log file every WebLogic Server administrator must be aware of is

the domain log file. This log file has the same name as the domain and is located in the

logs directory of the administration server. For example, in my local Linux environment,

starting from the domain root, the path to the domain log file is:

sample/servers/AdminServer/logs/sample.log

Each server instance in the domain has a subset of its messages broadcasted to

the domain log file. This makes the domain log file a convenient place from which to

monitor the general status of the domain.

Note  Messages in debug and lower severities will not be forwarded from server
log files to the domain log file.

When using the domain log file, administrators must be aware that messages in

the domain log file are not updated in any way and that they will appear in the order in

which they are aggregated, meaning that timestamps of the messages reflect the time

when they were produced, in their original server instance.

�Viewing Log Files
Oracle WebLogic Server includes enough functionality for basic log analysis right from

within the Administration Console. This is available from the Domain Structure panel,

under Diagnostics, then Log Files in the navigation tree. From here, administrators select

a log file, apply a time filter to its messages, and search through the resulting messages.

7�It is also possible to also store transaction logs in a database instead of in the file system. Either
option is configurable using the Administration Console, in the Default Store section of the
Services page under the General tab of the corresponding server.

Chapter 7 Logging and Monitoring

109

The first page lists all log files available in the domain. This includes the domain log

file as well as several log files per server instance, such as the server log file and the HTTP

subsystem log file. Figure 7-2 shows a listing of the log files available in a sample domain.

The desired log file will be displayed after selecting it and clicking the View button.

Log file contents are displayed in a table whose columns correspond to log message

properties according to the type of log file selected.

The option Customize This Table allows changing the default message filter. It is

possible to filter messages from a specific time range, such as several minutes, hours,

or days, as well as from an arbitrary time span. The filter customization also allows

selecting which message attributes are displayed and to customize message pagination,

going from 10 messages per page up to 5 thousand.

Note I f the log page selected does not show any messages, it is usually due to
the log filter time frame applied being too narrow.

The actual log file content is displayed in a new page that contains a table whose

caption changes to reflect the type of log file that is being displayed. Messages are listed

as rows in this table. Figure 7-3 shows how filtered log messages appear after having

selected the server log of an administration server.

Figure 7-2.  Summary of Log Files page

Chapter 7 Logging and Monitoring

110

Once an interesting log message appears, selecting it and clicking the View button

will open yet another page containing all of its attributes and values.

Troubleshooting a WebLogic Server domain by reviewing log files using these pages

is not practical in most scenarios.

Administrators will commonly analyze log files using other tools such as those

that enable them to read their messages in near-real time, for instance, the Linux

tail command, or to search for specific phrases across many log files such as the grep

command. Also, when administrators are tasked with monitoring a large number of

servers, log aggregation services such as Splunk or SumoLogic are better suited for

the job.

The functionality described above is useful for quick glances at log files without

having to log in to different hosts where server instances reside.

Figure 7-3.  Log File page

Chapter 7 Logging and Monitoring

111

�Configure Logging
There are many scenarios in which a WebLogic Server administrator should modify

the logging configuration. As indicated before, the log file name and location are

customizable, along with log file rotation and other details concerning the actual files

containing the log messages8.

However, administrators may be more interested in changing the configuration to

filter out certain messages, or to increase the logging volume to view messages in a non-

default severity, such as when enabling DEBUG messages in a particular subsystem. This

is all done at the server level.

The main settings page of each server instance contains a Logging tab that provides

access to configure its logging services. The following are the most common options an

administrator will want to customize:

•	 Log file name and location – absolute or relative path plus file name

•	 Log file rotation9

•	 Rotation type – either by size or by time

•	 Rotation size – expressed in KB

•	 Rotation time – either an hour of the day or an interval in hours

•	 Whether to limit the number of log files

•	 Number of log files to keep

•	 Rotation target directory

•	 Whether the log file should rotate at server start

8�Changing log file name and location, log rotation type, and directory, and whether or not to
rotate the log file at startup will require a server restart to become active.

9�In production mode, WebLogic Server will by default rotate the file when it reaches 5MB in size
and will not rotate the log file upon server start.

Chapter 7 Logging and Monitoring

112

•	 Logging volume

•	 General minimum severity – sent to all logging destinations

•	 Selective minimum severity – for server log, domain log, and

standard out

•	 General standard out and error redirection – sent to all logging

destinations

•	 Domain log buffer size – batch of messages to buffer before

forwarding to the domain log

�Logging Filters
Custom log filters control what messages are published based on their attributes. Once

a filter has been created, it is available for use by default in the server log, standard out,

and the domain log.

Filters can be created from the Administration Console, navigating to the domain

Configuration and Log Filters tab. Since log filters are created at the domain level, they

are available for use in any server instance in a domain.

A filter is created by giving it a name and attaching expressions to it. The expressions

are formed by putting together a message attribute with an operator and a value.

Multiple expressions can be added to a single filter, and the expressions can be further

combined to describe the right condition that will filter the messages as desired.

The message properties available for use in filters are the following: Date, Severity,

Subsystem, Machine, Server, Thread, UserID, TXID, ContextID, Timestamp, MsgID, and

Message.

The operators available are equals, less than, greater than, less than or equal, greater

than or equal, not equal, like, matches, in, and, or, and not.

The like operator accepts two wildcards: the percent sign to match any string of zero

or more characters, and a period to match any single character.

The matches operator compares against a regular expression, and the in operator

matches against a predefined set of values.

Chapter 7 Logging and Monitoring

113

Figure 7-4 shows two expressions in a sample filter.

The example expressions above would cause that only messages of severity error, in

servers whose name includes the mserver string, are published to the log destination on

which the filter is applied.

Log filters are an excellent feature available to WebLogic Server administrators to

facilitate server and subsystem troubleshooting.

�Monitoring
Just like with analyzing log files, WebLogic Server administrators monitor their

environments using a variety of tools, several of which are beyond the scope of Oracle

middleware.

Unlike logging services, WebLogic Server includes a robust framework for server

diagnostics, the WebLogic Diagnostic Framework, or WLDF. In fact, the logging filters

reviewed in the previous section used a query language that is part of WLDF.

WebLogic also includes basic tools to monitor server instance health. The

certification exam objectives cover only basic monitoring from the Administration

Console and the Monitoring Dashboard.

Figure 7-4.  Two sample expressions in a log filter

Chapter 7 Logging and Monitoring

114

Monitoring is available for server instances and their subsystems. This section

focuses on monitoring server instances.

The main configuration page of a server instance includes a Monitoring tab that

provides access to statistical information of the several aspects of the server runtime,

including performance, networking, threads, timers, workload, as well as to data from

several server subsystems such as JDBC, JMS, and JTA. The information is conveniently

organized and accessible using several sub-tabs. Figure 7-5 shows the various sub-tabs

under Monitoring.

The General tab is selected by default. It displays general information about a server

instance, including the current state of the JVM, the date and time when it was started,

the WebLogic Server installation directory, what Java version is powering the JVM, and

the OS name and version.

The View JNDI Tree link in this page opens a new window from which an

administrator can determine whether a particular Java object is available for use in

the JVM10.

10�Java Directory Naming Interface or JNDI is an API that maintains a type of directory service for
software components and allows Java software clients to discover objects by name.

Figure 7-5.  Monitoring a server instance in the Administration Console

Chapter 7 Logging and Monitoring

115

At the bottom of this page a second table is displayed, which contains a list of what

services and API versions are supported by this particular server instance; this includes, for

example, the versions of core Java EE services such as EJB, JDBC, Servlet, and so forth.

�Server Health
Core server health status11 is available in the Health tab. It is reported by WebLogic

Server in one of several states including:

•	 OK – Server is healthy.

•	 Warning – Services could have problems in the future.

•	 Critical – Something must be done to prevent service failure.

•	 Failed – Service has failed and must be restarted.

•	 Overloaded – Service is functioning normally but with too

much work.

WebLogic Server takes into account the health of several components and

subsystems to determine the overall server health, and reevaluates its assessment

continuously at regular intervals. Server health is determined by the less healthy

component or subsystem evaluated.

Whereas the General and Health tabs report general statistics, the Channels,

Performance, Threads, and Workload tabs display distinct core server runtime data as

follows:

•	 Channels – Network statistics including the number of connections

as well as incoming and outgoing bytes and messages.

•	 Performance – JVM memory and heap utilization, as well as process

and system CPU load12.

•	 Threads – Statistics about the server thread pool and the behavior of

individual threads.

•	 Workload – Statistics of the pending and completed requests of each

of the work managers in the server instance.

11�These states are defined in the weblogic.health.HealthState class from the WebLogic API.
12�From this page JVM garbage collection can be forced and thread stacks can be dumped.

Chapter 7 Logging and Monitoring

116

The statistics found in these four sections influence and are influenced by the work

done in other subsystems such as JDBC, JMS, and JTA.

The subject of memory allocation in the Java Virtual Machine, including garbage

collection algorithms and their intricacies, are well outside the scope of the first

WebLogic Server certification exam for administrators, though in practice it is very

desirable knowledge to have when working with production environments, where

performance and capacity are two core requirements. Understanding the information

contained in the Threads and Workload tabs is just as critical.

In very broad terms, WebLogic Server automatically manages thread allocation,

concurrency, and synchronization and does so using a single thread pool and execute

queue. The number of threads in the thread pool is automatically increased or decreased.

The execute queue considers priorities to determine order of execution. The basic

mechanism available for administrators to influence when requests are assigned to

threads, thus altering the priority of execution, is a work manager. WebLogic Server

comes configured out of the box with several work managers assigned to certain internal

components. Additional work managers may be created and assigned to applications.

�Monitoring Dashboard
The Monitoring Dashboard presents diagnostic data of servers and applications in charts

or graphs. It is accessible in the home page of the Administration Console, at the lower-

right corner under Charts and Graphs. Figure 7-6 shows a dashboard displaying a line

point chart of the thread pool of two server instances.

Figure 7-6.  Monitoring Dashboard displaying a chart

Chapter 7 Logging and Monitoring

117

The diagnostics information available in the Monitoring Dashboard proceeds from

the same sources as the monitoring pages, which is from runtime MBean attributes.

However, in addition to presenting live runtime data, it is integrated with WLDF and can

present information from archived diagnostic data.

Working with WLDF deserves a dedicated chapter, as it offers important functionality

to create watches, alerts, and also integrates with monitoring tools using standards such

as SNMP. For these reasons however, WLDF is outside the scope of this chapter.

The Monitoring Dashboard includes several metrics and views that receive input

from live runtime data. Configuring a dashboard is just a matter of selecting the view

or metric from the left panel, selecting the type of chart of graph on the right panel, and

clicking on the start button on the top-left corner of the screen to start seeing live data

displayed.

This brief introduction should be enough to highlight the value of the logging and

monitoring information available. If coupled with educated intuition and common

sense, it can be used to find root causes and define corrective actions for misbehaving

environments. Experienced administrators are likely to use additional tools to support

their research.

�Recommended Exercises
	 1.	 Enable debug mode in the server log file of a managed server.

	 2.	 Identify the message IDs of the startup and shutdown messages in

any server instance.

	 3.	 Customize the rotation configuration of a server log file in order to

have it rotate upon server restart and every 5 minutes.

	 4.	 Create a log message filter to display only messages of severity

CRITICAL and apply it to the server log file of an administration

server.

Chapter 7 Logging and Monitoring

118

�Certification Questions

	 1.	 It is possible to define a custom log message severity.

a.	 True

b.	 False

	 2.	 What type of Java object distributes log messages to a destination?

a.	 Logger

b.	 Log4J

c.	 Handler

d.	 All of the above

	 3.	 It is possible for applications to send custom log messages to the

server log file.

a.	 True

b.	 False

	 4.	 WebLogic Server can report information about operating system

users logged in the system.

a.	 True

b.	 False

	 5.	 Which contains statistical information about the number of

threads allocated?

a.	 Channels

b.	 Performance

c.	 Workload

d.	 None of the above

�Coming Up
In our next chapter, we will review the concepts of network channels and virtual hosts in

WebLogic Server.

Chapter 7 Logging and Monitoring

119
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_8

CHAPTER 8

Networking
The Oracle WebLogic Server configuration wizard permits configuring a listening

address as well as SSL and non-SSL port numbers for each server instance in a domain.

Even when administrators do not specify listen addresses, WebLogic Server instances

will, by default, accept incoming requests through all configured network interfaces

in the host where they reside, including the loopback interface and using the localhost

string.

This represents the minimal network configuration required to have functional

server instances that will listen to and accept requests over the network1.

Since it is unlikely that these simple settings satisfy the requirements for network

traffic in most production environments, WebLogic Server supports much more granular

networking configurations to enable more precise control over the traffic associated with

server instances.

�Network Channels
Network channel is the name given by Oracle to the piece of WebLogic Server

configuration that defines a network connection to a server instance. The basic and

default network configuration editable using the domain configuration wizard is

also defined in terms of network channels, and it is stored in the ServerMBean and

SSLMBean objects.

1�Reaching a WebLogic Server instance from outside the host where it is running also depends on
whether or not traffic destined to the network address specified in the configuration is permitted.

120

Custom network channels created by administrators are stored in instances of the

NetworkAccessPointMBean object2.

For obvious reasons, server instances complete network channel setup nearly at

the end of their initialization, when all other subsystems are ready to process requests

received over the network. Listing 8-1, which shows example log messages from an

administration server, shows the default network channels ready to begin accepting

connection requests.

Listing 8-1.  Log messages indicating the status of the default network channels

<Jan 31, 2017 1:52:21 AM CST> <Notice> <Server> <BEA-002613> <Channel

"DefaultSecure" is now listening on 127.0.0.1:7002 for protocols iiops,

t3s, ldaps, https.>

<Jan 31, 2017 1:52:21 AM CST> <Notice> <Server> <BEA-002613> <Channel

"Default" is now listening on 127.0.0.1:7001 for protocols iiop, t3, ldap,

snmp, http.>

A network channel was set up to support secure protocols and a separate channel is

set up to support their counterpart but insecure protocols. Again, this is the default and

most basic use of network channels in a server configuration.

�Purpose
Network channels are used by administrators to address or comply with complex

network requirements, such as the following:

•	 Security

•	 Quality of service

•	 Traffic segmentation

•	 Observability

•	 Performance

By creating and activating separate network channels, an administrator indeed segments

the network traffic associated with the corresponding WebLogic Server instances.

2�Custom network channels inherit values from the default network channel for properties that are
left undefined.

Chapter 8 Networking

121

Administrators may choose to utilize these channels in their WebLogic Server

domains according to several criteria, such as performance and/or quality of service of the

underlying network, application protocols used, traffic encryption, and so forth.

By doing this, administrators will also be implicitly facilitating network monitoring

by making it easier to differentiate traffic, etc.

�Configuration
Network channels are server-instance specific, and a single instance may have a number

of network channels3.

Network channels are uniquely identified by a combination of listen address, port

number, and protocol(s) supported.

Network channels can be configured using both the Administration Console and

WLST. When using the console, additional network channels can be created in the

Channels page under the Protocols page of the server configuration.

Figure 8-1 shows the location in the Administration Console of the page where

custom network channels are created and configured.

3�Be aware that when multiple network channels are created on a single network interface, there
will be some overhead due to context switching.

Figure 8-1.  Network Channels configuration page

Chapter 8 Networking

122

When a network channel is created, it is given a name, after which its properties may

be customized.

The name of a network channel is relevant for certain types of channels as we shall

see later. The following properties of a network channel can be customized:

•	 Name

•	 Protocol

•	 Listen address

•	 Port number

•	 External listen address

•	 External port number4

•	 Whether the channel:

•	 Is enabled or disabled

•	 Supports tunneling

•	 Supports HTTP

•	 Is outbound enabled

•	 Is two-way SSL enabled

•	 Enforces client-certificate

A network channel supports standard protocols such as HTTP and HTTPS, LDAP

and LDAPS, IIOP and IIOPS, SNMP, as well as the WebLogic Server proprietary protocols

T3 and T3S, admin, cluster-broadcast, and cluster-broadcast-secure.

The T3 protocol and its secure counterpart support packet multiplexing and are

used to transport RMI data. This protocol also supports WebLogic server to server

communications. The cluster-broadcast and its secure counterpart are used for unicast

broadcasting.

Tunneling is used to circumvent situations in which traffic from certain ports and

protocols is prohibited in a particular network. This is done by letting the restricted

traffic go over a connection or tunnel established using another protocol, for example,

when configuring T3 traffic to go over an HTTP connection.

4�The external listen address and port number must be specified for scenarios such as when
running asynchronous web services that expect a callback.

Chapter 8 Networking

123

Outbound enabled specifies that a network channel may be used to initiate

WebLogic server-to-server communications.

�Channel Types
Network channels can be classified by their function in two groups, internal and

external. As their names imply, internal channels are used for internal, WebLogic

Server-only traffic, as opposed to external or client traffic. Internal traffic can be

further subclassified in three types: cluster communication, session replication, and

administrative traffic.

When creating a network channel that will be used for either cluster broadcast or

replication, the name of the channels must be the same across all cluster members5, and

in the case of replication, the selected protocol should be t3.

A custom network channel may be created and activated dynamically on a server

instance; however, be aware that when a channel is made inactive, or altogether deleted,

it will not end traffic gracefully.

Note  Clustering is the subject of the next three chapters.

�Administration Port
It is a recommended practice for production environments to enable a channel

specifically for the purpose of separating client or application traffic from administrative

traffic.

It is not uncommon for servers that are behaving badly to become completely

irresponsive, including to intervention by an administrator. By enabling the

administrative port, access to all server instances will be guaranteed, as administrative

traffic will not compete with application traffic at any time.

5�Replication channels for clusters are not configured with SSL protection by default.

Chapter 8 Networking

124

The administration port is enabled at the domain level, and when it is, it activates

another default network channel6, the default administration channel.

Once activated, all managed servers will start using exclusively this new channel to

communicate with the administration server.

The following example log message (Listing 8-2) shows the administrative network

channel activated.

Listing 8-2.  An Administration Channel has been activated.

<Jan 28, 2017 1:31:30 PM CST> <Notice> <Server> <BEA-002613> <Channel

"DefaultAdministration" is now listening on 127.0.0.1:9002 for protocols

admin, ldaps, https.>

Attempting to enable the administration port and channel on a host with more

than a single JVM but with a single NIC, and therefore a single IP address, which is

typically the configuration of a development environment, will fail because each server

instance will attempt to bind to the same listen address and port number. The process

will only succeed for the first JVM. The following example log message (Listing 8-3)

shows this error.

Listing 8-3.  Error activating the administration channel

<Jan 28, 2017 2:31:30 PM CST> <Critical> <WebLogicServer> <BEA-000362>

<Server failed. Reason: [Server:002653]The servers administration channel

conflicts with the Administration Servers channel.>

The solution to this is to either assign multiple NICs and IP addresses so that each

JVM has a different listen address. The alternative is changing the administration port in

each server instance from its default number 9002. Figure 8-2 shows the location in the

Administration Console where the administration port can be overridden for each server

instance.

6�Enabling the administration port requires a full domain restart to become active.

Chapter 8 Networking

125

In production environments, this situation is not expected because production

hosts are often multi-homed systems that have an adequate number of IP addresses

configured.

�Sample Use
The following example illustrates how network channels could be used to configure a

production environment. The following network requirements are assumed:

	 1.	 Only HTTPS client traffic is allowed through the firewall.

	 2.	 All administrative traffic should be SSL protected and accessible

only from a secured network.

	 3.	 Cluster and replication traffic should be on a high-speed fabric

network such as InfiniBand.

	 4.	 Transactional traffic from EJBs should be logged and monitored.

Figure 8-3 shows how such an environment could be configured. The domain

includes three hosts with a cluster of two managed servers.

Figure 8-2.  Administration Port override page

Chapter 8 Networking

126

The diagram on the previous page could be realized by having three NICs configured

in the servers that host the managed servers, assuming that link for channels 3 and 4 is

high speed.

�Virtual Hosts
One additional feature that WebLogic Server has beyond its functionality as a Java EE

application server is that it can also serve static content as a web server that is HTTP 1.1

compliant.

When considering a virtual host configuration in WebLogic Server, a recommended

step is to ensure that managed servers listen for requests on privileged ports 80 and 443,

in order to avoid having to specify a port number in destination URLs.

WebLogic Server
Network Channels

HTTPS

HTTPS

HTTPS

HeartBeat T3

3

1 2

1 2

2

2

2

4

3 4

Managed Server 1

Managed Server 2

T3S

T3S

AdminServer Admin

Figure 8-3.  Sample diagram of network channels in a production
environment

Chapter 8 Networking

127

However, in order to avoid having to run JVM processes with elevated privileges,

WebLogic Server has the ability to employ Unix setuid and setgid commands to delegate

ownership of the JVM process to a non-privileged OS user, right after binding to

privileged ports.

This can be configured either while running a domain configuration wizard, as

part of the WebLogic Server machine definition, or at any time in the Administration

Console, under Machines in the main navigation tree7.

A virtual host in WebLogic Server works the same way as a virtual host configuration

in web servers such as Nginx or Apache httpd.

In essence, when WebLogic Server receives a request for a DNS name that has been

configured as a virtual host, it determines what server or cluster has been configured to

process such request, and sends the request to that particular server or cluster, which in

turns determines what application will handle the request.

Virtual hosts can be defined using the Administration Console, also using the

corresponding option in the main navigation panel.

For each virtual host defined, WebLogic Server can take a specific configuration

comprised of individual HTTP parameters and access logs.

A virtual host may also have assigned a network channel as a source from which to

process incoming requests.

In development environments where DNS names are not an option, the /etc/hosts

file in Unix/Linux systems can be edited to add the desired names, along the localhost

string or loopback address.

Once the desired DNS names are resolvable, the embedded HTTP server in

WebLogic Server will start routing requests to server instances configured as targets of

virtual hosts.

�Recommended Exercises
	 1.	 Create and activate a custom replication channel for a cluster.

	 2.	 Identify the changes to a JVM process, at the OS level, when a new

network channel is configured and activated.

7�This may also be configured using WLST by editing the properties of the UnixMachineMBean,
using methods setPostBindUIDEnabled and setPostBindGIDEnabled.

Chapter 8 Networking

128

	 3.	 Completely disable access to non-secure protocols by creating

and configuring custom network channels.

	 4.	 Start a server instance listening on privileged ports 80 and 443,

and configure the corresponding machine to delegate ownership

to the nobody user.

�Certification Questions

	 1.	 Select all protocols supported by the default secure channel:

a.	 HTTPS

b.	 T3S

c.	 SNMP

d.	 Cluster-broadcast-secure

e.	 All of the above

	 2.	 What objects store the default network channels configuration?

a.	 NetworkAccessPointMBean

b.	 ServerMBean

c.	 ConfigurationMBean

d.	 SocketMBean

e.	 None of the above

	 3.	 Select all required properties to configure a cluster replication

channel:

a.	 Tunneling

b.	 HTTP Enabled

c.	 Outbound

d.	 External listen address

e.	 External port

Chapter 8 Networking

129

	 4.	 It is possible to configure two network channels using the same

listen address and port number as long as:

a.	 They both support secure protocols

b.	 They both support different protocols

c.	 They both support the same protocols

d.	 It is not possible

e.	 All of the above

	 5.	 When no listen address has been specified in any network

channel, the following occurs:

a.	 Server instances fail to start

b.	 Server instances bind to localhost and loopback

c.	 Server instances bind to all IP addresses available in the host

d.	 A network channel is automatically created using the host IP address

e.	 None of the above

�Coming Up
In the next chapter, we will review the details of how to create a cluster, how to configure

a dynamic cluster, and what role server templates play in high availability in WebLogic

Server.

Chapter 8 Networking

131
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_9

CHAPTER 9

Clusters - Basics
Oracle WebLogic Server clustering is one of the most important features for which

large enterprises choose WebLogic Server over other alternatives. It has a mature set of

functionalities that facilitate administration of environments with stringent requirements

of availability, such as those in the financial and telecommunications industries.

In the next three chapters, we discuss WebLogic Server clustering and other related

high availability features. We start in this chapter with a brief overview of high availability

and how clustering contributes to it.

For experienced WebLogic Server administrators, the discussion of high availability

and the purposes of clustering, cluster architecture, and cluster creation in this chapter

may already be well-known subjects, and may want to skip to the part covering dynamic

clusters, which is new in Oracle WebLogic Server 12c. Dynamic clustering will certainly

be of interest to administrators of previous WebLogic Server versions.

�High Availability
With so much information available on the subjects of system availability, capacity,

performance, and so forth, it is very much likely that a few lines regarding these topics

could possibly raise more questions than they will answer. Knowing well we have a small

opportunity, we should start looking at the fundamental notions of availability and

capacity, and their relationship.

When a system is not available to users, it does not matter whether the system has

had its capacity exhausted because it has been so successful, or if it is unavailable due

to a malfunction or failure. When systems are not available to users, there is always a

negative impact.

132

If a system is so unique that no alternatives can be found, users will begrudgingly

return, such as when a government agency is unable to provide adequate online service

to its constituents. However, if they could, they would probably not come back.

In a world where we see alternatives for almost any conceivable online offer of

products and services, when a system is not available, users will leave, probably for good.

One of the simplest ideas to prevent lack of availability is to increase and distribute

capacity, insomuch that there will be a component to take over when a similar

component fails or has its individual capacity exhausted.

Availability and capacity are thus some of the key concerns in large enterprise

systems. Users must be shielded from underlying system failure. Systems must be able to

handle varying workloads at sundry times, sometimes in different orders of magnitude.

As it should be apparent by now, these concerns must obviously be addressed in

more areas than just the application server. The network will fail, as will disks, memory,

databases, etc. Adding redundancy to each system component eliminates single points

of failure. It does not matter whether your service provider is one of the largest in the

planet, and commits to a very high service level agreement. It will fail, and it will do it in

the least expected time. Therefore, our concern is to be prepared for when it occurs.

In Oracle WebLogic Server, this is where clustering comes into play. It can make

application server environments more reliable, more capable to meet demand. It will

enable several server instances to work together so that, if a part of them fails, the

remaining will continue to be available serving requests. In 12c, clusters can dynamically

grow beyond their initial allocated capacity in order to automatically keep up with

increasing workloads.

Beyond clustering, there are many modern technologies and practices that are used

to enhance system reliability, including cloud infrastructure, containers, and application

architecture patterns such as microservices, all of which can be put to work together to

enhance service availability. The nicest thing is that these have gone mainstream, not

reserved solely for the largest multinational companies, but for every business that cares

about service availability, despite its size. Very exciting times indeed.

�Tiered Architectures
Clustering in Oracle WebLogic Server is most commonly used in the context of multiple-

layer or n-tier architectures in which the most common implementation has three tiers:

one for the presentation layer that implements the user interface, one for the business

Chapter 9 Clusters - Basics

133

logic layer, and a third tier that houses the business data. The second tier, also called

middle tier, is where the software we call middleware resides. Oracle WebLogic Server is

part of Oracle Fusion Middleware and sits on this second tier.

The presentation tier commonly has web servers that deliver static content and may

also consume business logic from the middle tier. The business layer will also broker

access to data and other enterprise resources.

Note S ometimes the nouns tier and layer are used distinctly, often to denote
a difference between logical and physical separations between architectural
components.

The benefits of a layered architecture are apparent. Functionality may be

maintained, upgraded, or replaced altogether without much disruption to the adjacent

tiers. To some degree, and assuming one is using standard protocols and technologies,

there is also the added benefit of using different but compatible technologies in different

tiers.

Figure 9-1 shows a typical three-tier architecture with optional firewalls between

the tiers.

Three-tier Architecture

Presentation

Business

Data

Figure 9-1.  Three-tier architecture

Chapter 9 Clusters - Basics

134

This separation of duties is critical when it comes to considering the ability of a

system to scale. For instance, when an application has high traffic on the front end, but

such traffic is not reflected in equal load in back-end transactions, it would be an obvious

waste to scale the back end equally with the front end.

Sometimes, technical requirements are not fully satisfied by these three layers alone,

and they must be broken into additional layers, in order to extend these benefits to more

granular types of functionality, for example, by splitting the presentation tier into a web

tier and a dynamic presentation tier.

Choosing the right solution architecture requires careful consideration of several

technical and business concerns, including performance, efficiency and reliability.

A more distributed architecture will allow finer-grained security and favor greater

availability, including the ability to load balance calls as required. This comes at the

cost of more complex administration and often greater licensing costs. The alternative is

simpler and easier but comes at the cost of having a reduced capacity to remain available

in a variety of circumstances.

�Cluster Architecture
The basic component of an Oracle WebLogic Server cluster is the server. Server

instances have built-in configurable functionality that enables them to work together as

one cohesive whole. Additionally, several types of objects can be clustered, including

applications and services such as EJB, JDBC, and JMS.

Oracle WebLogic Server supports all three tiers of the architecture approach

described. In other words, a WebLogic Server cluster could contain a full enterprise

application within its boundaries. It includes web server functionality to implement a

presentation tier, and it can handle very well the tasks of a middleware Java application

server, including all things necessary to interact with several types of enterprise data

such as databases, messaging, and adapters for certain enterprise applications.

However, in production environments, a WebLogic Server cluster is commonly

found in the business and persistence tiers, leaving the presentation tier work to

specialized web servers and load balancers.

The reverse proxy architecture supported by WebLogic Server to provide the web tier

can be hardware based or software based. Hardware load balancing1 is faster and takes

1�It is typical to see BigIP F5 load balancers fronting WebLogic Server clusters in large production
environments.

Chapter 9 Clusters - Basics

135

advantage of more robust load-balancing algorithms and configuration options. WebLogic

Server itself supports software load balancing. It provides this functionality through a built-

in application aptly named HttpClusterServlet. However, the recommended approach

to employ software load balancing to front WebLogic Server environments is to use a

supported web server, and install and configure the corresponding WebLogic Server plug-

in. Supported web servers are Apache HTTP Server, Oracle HTTP Server2, and Microsoft

IIS. Proxy plug-ins are limited to round-robin3 load balancing but are able to recognize

failed members to prevent further routing.

Figure 9-2 shows a high availability environment for distributed applications using

Oracle WebLogic Server clusters.

2�Oracle HTTP Server is based on Apache HTTP server and can serve static and dynamic content
in a variety of programming languages.

3�Round-robin is the simplest load-balancing algorithm. It involves sending traffic to each the
cluster member without priority and in circular order.

WebLogic Server
High Availability Architecture

HTTP Server

HTTP Server

plug-in

plug-in

Server Server

Servlet

Server Server

Servlet

Server Server

Servlet

EJB

EJB

EJB

Presentation Cluster Business Cluster

WebLogic Server Domain

Figure 9-2.  Oracle WebLogic Server cluster

Chapter 9 Clusters - Basics

136

The diagram4 shows a pair of HTTP servers in a DMZ, each with the WebLogic Server

plug-in configured to load balance incoming traffic by assigning to each member in a

presentation cluster an equal share.

The diagram also shows a business cluster that will also be able to load balance

incoming requests from the presentation tier to clustered EJB objects.

The sample clustered architecture supports load balancing and failover, which are

the fundamental benefits of WebLogic Server clustering. The cluster size depicted in the

diagram also supports zero downtime maintenance5.

�Cluster Creation
Preparing to create a WebLogic Server cluster for production environments should

begin by careful requirements review and planning. The analysis should result in

identifying a candidate clustering architecture that better supports the applications that

will be deployed. This requires sufficient understanding of the architecture of the target

applications.

A properly designed clustering architecture will enhance the ability of the

application to serve customers well. However, be aware that some architectural

decisions made at the application level may impose limitations on what options the

WebLogic Server clustering infrastructure can leverage.

An organization may have set technical and technological and even cultural

standards that must also be taken into account when planning WebLogic Server

clustering. These include, for example, whether or not a hardware load balancer is

available, and whether or not the load balancer will terminate SSL connections and

route unencrypted traffic to the WebLogic Server presentation cluster instead. Other

examples are rules defined for interaction with the DMZ, presence of firewall rules

between tiers, etc.

In essence, the effort demands understanding what the applications will do; how the

information will flow in a transaction, from the end user to the enterprise data stores and

back, for each type of transaction that will be supported; and what types of components

implement these functionalities.

4�It is typical to see firewalls between each tier, especially between the DMZ and the presentation
tier.

5�In zero-downtime maintenance, one cluster member is intervened at a time, thus ensuring that
at least two other members are operational at all times in order to preserve redundancy,

Chapter 9 Clusters - Basics

137

Depending on the size of the organization, this type of analysis could be done by

individuals in the architect role instead, who would provide specifications to WebLogic

Server administrators, but that is not always the case. Sometimes administrators will play

this role and will need to gather this information and gain such understanding.

Once a high-level architecture has been defined, including how many clusters will

be supported, their size and role, the number of hosts that will comprise the domain,

the rules of how the communication will flow across clusters, from one component to

another, etc., it will then be time to start working on the details of the configuration at the

cluster, server, and service levels. The following is a list of sample items to consider for

the next level down:

•	 Capacity – a starting point for defining server capacity is to

allocate the correct ratio of server instances to CPU cores in a host.

Experience with similar applications is useful; however, nothing

beats the precision of load testing the application and similar

approaches to verify assumptions.

•	 DNS names – when a firewall is present between the proxy and

cluster tiers, server instances must bind to public DNS names. This

must be specified for each server instance using the configuration

property: ExternalDNSName

•	 IP addresses – it is recommended to configure static IP addresses in

cluster hosts.

•	 Cluster address – may be defined as a single DNS name, mapping to

several IP addresses or as a comma-separated list of IP addresses or

hostnames and port numbers.

Once these details have been defined, the clusters can be created and configured.

The tools employed to create a cluster are three:

	 1.	 The domain configuration wizard

	 2.	 The Administration Console

	 3.	 WebLogic Scripting Tool

Clusters can be created using the domain configuration wizard only when creating

domains from scratch. The options to configure a cluster in the configuration wizard

are limited to the fundamental, which is creating the servers, creating the cluster. and

Chapter 9 Clusters - Basics

138

assigning cluster members. The corresponding server addresses and cluster address may

also be specified using the configuration wizard. This process was reviewed as part of the

domains topic in Chapter 3.

�Using the Administration Console
A cluster can be created using the Administration Console in the Clusters option under

Environment in the Domain Structure panel. The first step is creating a cluster as a

simple container object. This requires specifying a cluster name and a messaging mode.

When selecting unicast as messaging mode6, which is the default and recommended

option, one may optionally specify the name of an existing network channel7 for

broadcasting cluster messages. If multicast was selected, it is possible to specify a

multicast address and port.

Once the cluster has been created this way and changes have been activated, many

more configuration options become available from the cluster page. The following is a

list of some of the most commonly configured options:

•	 Load algorithm – The default option is round-robin, but there are

options available to balance load using a pseudo-random algorithm

(random option) or by assigning a priority to cluster members

(weight-based option).

•	 Cluster address – This is used for generating handles and failover

addresses for EJB components. This may also be automatically

generated, and there is a related option to specify the number of

cluster members for the purpose of generating the cluster address.

•	 Transaction affinity – When cluster members are participating of

distributed transactions, enabling this option will send requests to

server instances that are already part of a transaction.

•	 WebLogic Plug-in – Enabling this option is for presentation-layer

clusters that sit behind a web server in which the WebLogic Plug-in

has been installed and configured. This will cause servers to issue a

call to getRemoteAddr method on incoming requests. The method

will return the value WL-Proxy-Client-IP header that contains the

6�By default, cluster members will broadcast heartbeat messages every 10 seconds.
7�Network channels were reviewed in Chapter 8, “Networking.”

Chapter 9 Clusters - Basics

139

address of the browser that originated the request, instead of the web

server from which the request was received.

•	 Member warmup timeout – This represents the period of time, in

seconds, that a server will wait to synchronize with other servers it

has discovered before timing out.

Additionally, there are options to configure properties to control the behavior of the

cluster related to server membership, JTA, replication, migration, scheduling, overload,

and HTTP.

The next step in cluster configuration is adding cluster members. This can be done

by either adding an existing server instance to the cluster, or by creating new server

instances and adding them as cluster members.

Note R unning server instances must be stopped before attempting to add them
as members of a cluster.

When opting to create a new server, its name, the listen address and listen port must

be provided. All other options at the server level may be subsequently configured form

the individual server configuration pages.

Once the general properties of a cluster have been configured, and each

cluster member has been added, the cluster is ready for use. Even though both the

Administration Console and WLST offer a cluster start and cluster stop operations, these

are really abstractions of the start or stop requests sent to individual servers.

At any given time, a cluster may have one or more members in either running or

shutdown state. Once cluster member instances are up and running, the applications

deployed on them will automatically have the load balancing and failover features

discussed in this chapter available to them.

�Using WebLogic Scripting Tool
Creating a cluster using WLST follows the same general process as doing it from

the Administration Console. As indicated in a previous chapter, the Administration

Console is really a JMX client, operating on JMX beans that represent WebLogic Server

components. Therefore, since the Administration Console and WLST are both working

on the same type of objects when creating and configuring a cluster, the process to create

and configure clusters is equivalent in most respects.

Chapter 9 Clusters - Basics

140

Once a WLST edit session has been started by a user that is a member of the

administrators group in a domain, a cluster object of type ClusterMBean8 can be created

and configured by invoking its methods to set the required properties.

By default, the essential cluster properties that make the object operational are set to

default values. For example, the property of the cluster object that controls what protocol

to use for cluster messaging is named ClusterMessagingMode and has a default value of

unicast.

Objects of type ServerMBean, either new or existing, may then be added to the

cluster object. This is actually accomplished by invoking the setCluster method on the

ServerMBean object, rather than the other way around. Once changes are saved and

activated, the cluster is ready for immediate use.

Listing 9-1 is an example WLST edit session9 in a domain named sample. In the

session, a cluster named testCluster is created, a server named testServer is created and

configured, assigned to an existing Unix machine named machine, the changes are

activated and the cluster is started.

Listing 9-1.  Creating a cluster using WLST

wls:/offline> connect('weblogic','samplepass','127.0.0.1:7001')

Connecting to t3://127.0.0.1:7001 with userid weblogic ...

Successfully connected to Admin Server "AdminServer" that belongs to domain

"sample".

wls:/sample/serverConfig> edit()

Location changed to edit tree. This is a writable tree with

DomainMBean as the root. To make changes you will need to start

an edit session via startEdit().

wls:/sample/edit> startEdit()

Starting an edit session ...

Started edit session, please be sure to save and activate your

changes once you are done.

wls:/sample/edit !> cluster = cmo.createCluster('testCluster')

8�The actual type of a cluster object is weblogic.management.configuration.ClusterMBean.
9�As usual, an edit session may be initiated after invoking the wlst.* script, which will load and use
the required classpath.

Chapter 9 Clusters - Basics

141

wls:/sample/edit !> print cluster

[MBeanServerInvocationHandler]com.bea:Name=testCluster,Type=Cluster

wls:/sample/edit !> server = cmo.createServer('testServer')

wls:/sample/edit !> print server

[MBeanServerInvocationHandler]com.bea:Name=testServer,Type=Server

wls:/sample/edit !> cd('/Machines/machine')

wls:/sample/edit/Machines/machine !> machine = cmo

wls:/sample/edit/Machines/machine !> print machine

[MBeanServerInvocationHandler]com.bea:Name=machine,Type=UnixMachine

wls:/sample/edit/Machines/machine !> cd('/Servers/testServer')

wls:/sample/edit/Servers/testServer !> cmo.setListenAddress('127.0.0.1')

wls:/sample/edit/Servers/testServer !> cmo.setListenPort(10000)

wls:/sample/edit/Servers/testServer !> cmo.setMachine(machine)

wls:/sample/edit/Servers/testServer !> cmo.setCluster(cluster)

wls:/sample/edit/Servers/testServer !> save()

Saving all your changes ...

Saved all your changes successfully.

wls:/sample/edit/Servers/testServer !> activate()

Activating all your changes, this may take a while ...

The edit lock associated with this edit session is released

once the activation is completed.

Activation completed

wls:/sample/edit/Servers/testServer> cd('/')

wls:/sample/edit> start('testCluster','Cluster')

Starting the following servers in Cluster, testCluster : testServer

.................

All servers in the cluster testCluster are started successfully.

The code above shows that it is a relatively simple task to automate cluster creation

using the Oracle WebLogic Server JMX API and WebLogic Scripting Tool.

Chapter 9 Clusters - Basics

142

�Dynamic Clusters
Dynamic clusters are a great new feature in Oracle WebLogic Server 12c, which enhances

the existing clustering functionality, by allowing clusters to grow automatically, on

demand, based on a set of configuration values.

Dynamic clusters contain dynamic server instances as members. Dynamic servers

are based on a single server template that contains configuration information.

Note  Dynamic servers are regular server instances that get created on-the-fly by
WebLogic Server.

Administrators specify the number of cluster members anticipated to be required

in order to handle peak workload in their environments, and WebLogic Server will then

create the servers dynamically and configure them using the parameters provided in a

server template.

The functionality to create a dynamic cluster is also available from the

Administration Console and WLST, but the process differs slightly as additional

information is required to be able to instantiate server instances dynamically.

�Server Templates
Server templates define the set of attributes that are necessary to make the configuration

of dynamic servers unique, and therefore runnable alongside other server instances in a

domain. These attributes include:

•	 Server name

•	 Listen port and SSL port

•	 Machine name

At runtime, WebLogic Server calculates the actual values to be used in dynamic

servers. It uses the server name provided as prefix and appends an incremental numeric

value for each dynamic server.

Chapter 9 Clusters - Basics

143

The value of machine name is used similarly. It controls whether servers are

assigned to a machine, and what algorithm to use when assigning dynamic server

instances to machines. The options include assigning all dynamic server instances to a

single machine or assigning them to any machine available in the domain, or to a subset

of them. This last option requires an expression that will be evaluated when selecting a

candidate machine.

Listen ports are specified as a numeric literal for the first dynamic server, and

WebLogic Server will then increment the supplied value by one for each dynamic server

created.

Server templates may be created from the administration console and WLST, either

explicitly, using the option provided in the Domain Structure panel, or implicitly, by

creating a dynamic cluster from the Clusters page.

The following considerations should be followed when creating dynamic clusters:

•	 Controlling dynamic clusters using Node Manager requires that each

dynamic server instance is assigned to a WebLogic Server machine.

•	 WebLogic Server plug-ins include a property named

DynamicServerList to support dynamic updates to the list of

registered target servers in the web tier.

•	 Dynamic clusters require cluster-wide application deployments, as

opposed to regular clusters that support deploying applications to

selected cluster members.

Listing 9-2 shows how to create a dynamic cluster using WLST. In this scenario, two

additional objects are involved: one that represents the server template and another that

represents the configuration of the set of dynamic servers in a dynamic cluster.

Listing 9-2.  Creating a server template using WLST

wls:/offline> connect('weblogic','samplepass','127.0.0.1:7001')

Connecting to t3://127.0.0.1:7001 with userid weblogic ...

Successfully connected to Admin Server "AdminServer" that belongs to domain

"sample".

Chapter 9 Clusters - Basics

144

wls:/sample/serverConfig> edit()

Location changed to edit tree. This is a writable tree with

DomainMBean as the root. To make changes you will need to start

an edit session via startEdit().

wls:/sample/edit> startEdit()

Starting an edit session ...

Started edit session, please be sure to save and activate your

changes once you are done.

wls:/sample/edit !> serverTemplate = cmo.createServerTemplate('testServer

Template');

wls:/sample/edit !> print serverTemplate

[MBeanServerInvocationHandler]com.bea:Name=testServerTemplate,Type=Server

Template

wls:/sample/edit !> dynamicCluster = cmo.createCluster('testDynamicCluster')

wls:/sample/edit !> print dynamicCluster

[MBeanServerInvocationHandler]com.bea:Name=testDynamicCluster,Type=Cluster

wls:/sample/edit !> dynamicServers = dynamicCluster.getDynamicServers()

wls:/sample/edit !> print dynamicServers

[MBeanServerInvocationHandler]com.

bea:Name=testDynamicCluster,Type=DynamicServers,Cluster=testDynamicCluster

wls:/sample/edit !> dynamicServers.setServerTemplate(serverTemplate)

wls:/sample/edit !> dynamicServers.setMaximumDynamicServerCount(5)

wls:/sample/edit/Servers/testServer !> save()

Saving all your changes ...

Saved all your changes successfully.

wls:/sample/edit/Servers/testServer !> activate()

Activating all your changes, this may take a while ...

The edit lock associated with this edit session is released

once the activation is completed.

Activation completed

Chapter 9 Clusters - Basics

145

Dynamic clusters are one step forward in assisting administrators to support

automatic horizontal scaling of WebLogic Server environments.

�Recommended Exercises
	 1.	 Customize the sample code to create a regular cluster that

comprises two managed servers on two different machines.

	 2.	 Create a dynamic cluster with a maximum capacity of two server

instances using the Administration console.

	 3.	 Implement a WLST script to create a three-tier WebLogic Server

clustered environment consolidated to run on a single host.

�Certification Questions
	 1.	 Select the web servers supported by WebLogic Server to provide

the web tier:

a.	 Apache HTTP Server

b.	 Oracle HTTP Server

c.	 Microsoft IIS

d.	 All of the above

	 2.	 What is the name of a proprietary header in the WebLogic Server

plug-in?

a.	 True-Client-IP

b.	 WL-Proxy-Client-IP

c.	 WL-Client-Proxy

d.	 None of the above

Chapter 9 Clusters - Basics

146

	 3.	 Name the two fundamental benefits of WebLogic Server clusters:

a.	 Reliability and robustness

b.	 Scalability and resilience

c.	 Load balancing and failover

d.	 Capacity and performance

	 4.	 What is the main benefit of having the Oracle WebLogic Server

plug-in in the web tier?

a.	 Ability to recognize failed members

b.	 Licensing

c.	 Compatibility

d.	 Flexibility

	 5.	 Select all features of dynamic servers:

a.	 Require OS virtualization

b.	 Enable a domain to scale out

c.	 Enable server instances to scale up

d.	 All of the above

�Coming Up
In our next chapter, the discussion will review the internal communication between

WebLogic Server cluster members, and what options are available to automatically

recover from failed server instances.

Chapter 9 Clusters - Basics

147
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_10

CHAPTER 10

Clusters - Advanced
In this chapter, we review certain concepts about Oracle WebLogic Server cluster

communications and its underlying, foundational technologies. This knowledge is

requisite for senior middleware administrators. It covers lower-level details about

how clustering communication works in WebLogic Server, and is followed by a short

description of monitoring clusters using the Administration Console.

�Enabling Technologies
Oracle WebLogic Server administrators need to be able to understand cluster

configuration well beyond the options available in the configuration wizard. They

need to understand the purpose of available configuration settings, as well as how

to troubleshoot their effects when necessary. This is particularly true with cluster

communication. A good understanding of computer networking topics is especially

helpful for Oracle WebLogic Server administrators working on large production systems.

The fundamental technologies used in Oracle WebLogic Server cluster

communications are network sockets, unicast, and multicast. Because of their

importance, and that of their underlying network protocols, a basic refresher is in order.

�TCP/IP
The dominant communication protocol suite in the world is informally referred to as

TCP/IP, which stands for Transmission Control Protocol, Internet Protocol. Oracle

WebLogic Server leverages the TCP/IP stack present in supported operating systems to

communicate over the network.

148

Protocols in TCP/IP specify how data in a network is prepared for transmission,

transmitted, routed, and received. These responsibilities are distributed across a layered

architecture, in which one layer provides services to its adjacent layer. Oracle WebLogic

Server administrators should be familiar with three of these layers: network, transport,

and application, as well as with three network protocols: IP, TCP, and UDP.

�IP
IP is a connection-less, unreliable1 protocol that works at the network layer. It has

the fundamental task of delivering data in packets named datagrams, from source to

destination hosts. Peers in IP networks are identified by IP addresses, either IPv4 or IPv6.

An IP address identifies a network interface configured on a host, and a host may

have more than one network interface configured.

Thus, in order for a WebLogic Server instance to be able to communicate over the

network, it must always have associated at least one IP address. WebLogic Server will

ensure that every instance will use one: either one configured by an administrator, or

one assigned as per default configuration options. For instance, when administrators

create servers using the Oracle WebLogic Server configuration wizard, they can explicitly

configure an IP address by typing it, or by selecting it from a list, or they may choose one

of the options that implicitly configure the IP address, either to bind to all configured IP

addresses, or to localhost2.

�TCP
TCP is a connection-oriented, reliable protocol that works at the transport layer, adjacent

to the network layer. That is, data sent using TCP gets converted into datagrams that are

sent over the network using IP.

At this layer, one side listens for connection requests to be initiated by another end.

Once a connection has been established, data can be streamed both ways until the

connection is closed. TCP ensures that messages delivered are identical to messages

sent, thus guaranteeing reliability. Again, TCP uses IP for actual data delivery over the

network to the target host.

1�Unreliable as in not providing features to recover from data loss.
2�The localhost name resolves to address 127.0.0.1 in IPv4 or 0:0:0:0:0:0:0:1 in IPv6, which
corresponds to the loopback interface. These IP addresses are not routable.

Chapter 10 Clusters - Advanced

149

TCP specifies that each end of a connection must define source and destination

identifiers, known as port numbers3. Thus, whereas IP addresses are used to identify

hosts in a network, port numbers are used to identify processes in a host. The notion of a

port number is closely associated with that of a network socket.

�Sockets
Sockets are network communication endpoints, and are used in much the same way

applications use files to interact with drive storage. When data must be written out over

the network, it is written to a socket, and when data must be read from the network, it is

read from a socket.

Processes refer to sockets by their address, which are composed of an IP address and

a port number, separated by a colon.

At startup, each Oracle WebLogic Server instance binds to at least one network

socket4 in order to be able to listen for incoming connection requests.

Note T he effect of choosing All Local Addresses while creating a server instance,
is to have the instance create as many sockets as IP addresses are configured in
the host, in both IPv4 and IPv6.

�UDP
UDP stands for User Datagram Protocol and like TCP uses port numbers and runs at the

transport layer, on top of IP. Unlike TCP though, UDP does not have reliability features

and is not connection oriented.

UDP is a preferred choice over TCP, especially in cases where data payloads are small

enough to fit in a single packet, or when occasional packet loss is not critical, such as

with voice and video streaming.

Oracle WebLogic Server can use UDP for certain types of communications.

3�Port numbers are 16-bit signed integers, classified in three ranges: system (0-1023), user
(1024-49151), and dynamic or private (49152-65535).

4�When no values are explicitly provided, WebLogic Server uses default values to build a socket
address: for example, 7001 is the default port number for an administration server.

Chapter 10 Clusters - Advanced

150

�Multicast
Multicast is a mechanism that enables one-to-many communications using UDP. In

multicast, a single host sends messages to a specific IP address5 and port number, and

the network automatically relays them to all associated hosts, typically an entire subnet,

making it effectively a type of group communication.

Administrators must be aware that multicast presents certain challenges for which

some network administrators prefer not to allow multicast traffic on their networks.

One such issue is known as multicast storms, in which networks are stressed due to

repeated packet relay.

When Oracle WebLogic Server instances in a cluster use IP multicast, in order to

defeat UDP unreliability to a degree, they use modified multicast messages that are able

to detect and retransmit lost messages.

�Unicast
Unicast is point-to-point network communication. It occurs between a unique sender

and a unique receiver, using sockets, leveraging the reliability features of TCP.

In the TCP/IP world, unicast works well notwithstanding the network topology

implemented. This is perhaps the chief reason why unicast is the default communication

mode in quite a few networked computing environments. This is also true with

clustering in Oracle WebLogic Server.

�Application Layer
In the TCP/IP network architecture, applications work at the top layer of the stack. The

application layer is adjacent to the transport layer where TCP and UDP work. A Java

Virtual Machine process that represents an Oracle WebLogic Server instance is located at

this layer.

It is quite common to see other application processes running alongside WebLogic

Server processes in production systems. Two common examples are log collectors

and hardware monitoring tools. These other processes will bind to, and use their own

network sockets, or message their own multicast addresses. Even though they could be

5�WebLogic Server uses 239.192.0.0 as multicast address by default.

Chapter 10 Clusters - Advanced

151

using different application protocols6, the communication down the stack, through the

underlying protocols, remains the same.

�Cluster Communication
A fundamental requirement for clustering anywhere is that each cluster member

must be able to respond to requests for service in the same way every other cluster

member would do. Therefore, a core cluster feature is having cluster members replicate

information among them, so that all of them are able to respond as if they were one and

the same instance.

The fundamental types of information that Oracle WebLogic Server cluster members

share are of three types:

•	 Health status

•	 JNDI state

•	 HTTP session information

Note HTTP session replication will be reviewed in the next chapter that deals
with proxies.

�Health Status
Cluster members by default will send a heartbeat every 10 seconds. If the advertisement

is not received by other cluster members at the right frequency, according to the protocol

chosen, the server instance will be considered failed and removed from the cluster.

When a cluster is configured to use multicast communication, the default behavior

is to consider a server failed after three consecutive missed heartbeats. When using

unicast, since it uses a reliable protocol, only one heartbeat will be enough to consider

an instance failed. Once servers cross the applicable health notification threshold, they

are removed from the cluster.

6�Common application protocols include Telnet, SSH, HTTP, FTP, SMTP, DNS, NTP, RTP, etc.

Chapter 10 Clusters - Advanced

152

�JNDI Replication
As briefly mentioned in the introductory chapters, JNDI is a naming service. It maintains

a tree-structured registry of objects and assigns names to them. Clients may then

use JNDI to locate objects by these names, similar to the way DNS maps names to IP

addresses7.

Every Oracle WebLogic Server instance maintains its own JNDI tree. Server instances

that are members of a cluster maintain a tree that also contains objects that are bound to

all other cluster members, effectively providing a view of all objects available across the

cluster8.

Server instances continuously monitor messages from other cluster members

advertising the state of their JNDI trees, and will update their references to clustered

objects in their local trees accordingly.

Because of JNDI replication, a client can connect to a cluster and consume its

services as if they were hosted on a single Oracle WebLogic Server instance.

RMI9 is the enabling technology that Oracle WebLogic Server uses for JNDI

replication. RMI stubs of the clustered objects get distributed to cluster members across

the network. Each RMI stub used in JNDI replication in Oracle WebLogic Server is aware

of the multiple locations of the referenced clustered object.

�Selecting Protocols
As stated, a critical aspect of a cluster is its ability to replicate information among cluster

members. Therefore, a key responsibility of an Oracle WebLogic Server administrator is

to select the right protocol for cluster communication, configure the cluster accordingly,

and monitor communication performance throughout the life of the cluster.

Oracle WebLogic Server clusters can be configured to communicate using either

multicast or unicast. As discussed, this implies using either UDP or sockets, with their

respective nuances.

7�Java EE developers are familiar with this mechanism as they use a context object to locate objects
by their JNDI names.

8�Clustered objects are only bound to the local JNDI tree only if no naming conflicts exist.
9�RMI stands for Remote Method Invocation. It is using RMI that a client in one JVM can invoke
methods from an object in a remote JVM.

Chapter 10 Clusters - Advanced

153

Sometimes, the choice will be as simple as being informed by network

administrators in the organization that multicast is not supported, leaving no choice but

to use unicast.

Many times, both choices will be available. When they are, choosing one protocol

over the other should result from an educated analysis that considers several factors,

including cluster size, network topology and latency, and so forth. The level of

experience of Oracle WebLogic Server administrators and that of network administrators

is definitely an important factor in making that decision as well.

Bottom line, the protocol chosen for cluster communications should facilitate

that messages from cluster members reach their destinations consistently and timely

throughout the life of the cluster.

�Choosing Multicast
Multicast is an efficient protocol for WebLogic Server cluster messaging that works well

out of the box for domains deployed on a single network.

For domains that span multiple networks, such as when servers are deployed across

data centers to maximize availability, the following considerations must be observed:

•	 Network latency should be low, the recommended value is 10ms.

•	 Network routers must be configured to fully support multicast packet

transmission.

•	 Packet time-to-live must be configured so that routers will not

discard multicast packets before they reach their final destination.

•	 A dedicated multicast address and port number should be assigned

to the WebLogic Server cluster.

In general, multicast is recommended as the right option for large clusters, provided

that the target environment can be made to comply with the considerations above.

Figure 10-1 shows how Oracle WebLogic Server cluster communication flows when

multicast mode has been configured on a cluster.

Chapter 10 Clusters - Advanced

154

In the figure above, a cluster of three Oracle WebLogic Server instances have been

deployed to a network whose switch or router has been configured with a multicast

address of 239.192.0.0 (1). The WebLogic Server cluster has been configured accordingly.

The first managed server sends a heartbeat message targeting the multicast address

(2). Since the switch or router knows which hosts have registered with the multicast

address, it will make copies of the message received and relay them to the rest of these

hosts (3), in our case managed servers two and three.

The process will be exactly the same regardless of which cluster member initiates the

multicast communication, and the remaining cluster members will receive a copy of the

original datagram for their individual use.

The following is an example of a WLST session (Listing 10-1) where cluster

messaging mode is set to multicast, setting the corresponding address and port number.

Listing 10-1.  Setting multicast cluster messaging

wls:/offline> connect('weblogic','welcome1','127.0.0.1:7001')

wls:/sample/serverConfig> edit()

wls:/sample/edit !> startEdit()

wls:/sample/edit !> cd('Clusters/cluster')

wls:/sample/edit/Clusters/cluster !> print(cmo)

[MBeanServerInvocationHandler]com.bea:Name=cluster,Type=Cluster

wls:/sample/edit/Clusters/cluster !> cmo.setClusterMessagingMode('multicast')

Multicast Cluster Messaging

Managed Server 1

Managed Server 2

Managed Server 32

Switch/Router

1

3

239.192.0.0

Cluster

Figure 10-1.  Cluster communication using multicast

Chapter 10 Clusters - Advanced

155

wls:/sample/edit/Clusters/cluster !> cmo.setMulticastPort(11001)

wls:/sample/edit/Clusters/cluster !> cmo.setMulticastAddress('239.192.0.1')

wls:/sample/edit/Clusters/cluster !> save()

wls:/sample/edit/Clusters/cluster !> validate()

wls:/sample/edit/Clusters/cluster !> activate()

...

The following non-dynamic attribute(s) have been changed on MBeans

that require server re-start:

MBean Changed : com.bea:Name=cluster,Type=Cluster

Attributes changed : MulticastAddress, MulticastPort

...

wls:/sample/edit/Clusters/cluster !> exit()

Note  In order to use IPv4 multicast, all WebLogic Server instances must have the
preferred IP stack set to IPv4.

The preceding code invokes methods of the Cluster MBean. It is worth noting that

the output of the activate method states that changing cluster messaging modes require

a full cluster restart in order to become fully active.

�Choosing Unicast
It could be argued that unicast is simpler than multicast, given the relative lower entry

barrier for using unicast on TCP/IP networks of diverse topologies. It is probably fair to

say that it is definitely simpler to use than multicast in many Oracle WebLogic Server

environments10.

It is not necessarily better in all cases, and indeed not more performant for high-end

workloads, but certainly easier to get started with, and definitely good enough in the

long run for a large share of environments.

10�At the time of writing this, multicast is not supported out-of-the-box by the network stack of
some virtualization technologies such as Oracle VirtualBox, or by some cloud providers such as
Amazon AWS.

Chapter 10 Clusters - Advanced

156

As explained in previous paragraphs, unicast uses network sockets, and implements

a form of one-to-one communication. However, cluster communication follows a

one-to-many pattern. Oracle WebLogic Server overcomes this challenge by following

classifying cluster members in groups, and appoints certain cluster members as leaders

of groups. Then, each cluster member sets up sockets to send and receive status

messages with its group leader, and the group leader is responsible for relaying the

message to the remaining cluster members in the group, and to other group leaders

as well, thus limiting the number of sockets required while carrying out one-to-many

communications.

WebLogic Server organizes a cluster in groups by creating an alphabetically sorted

list of cluster member names and splitting them in groups of up to 10 servers. The first

server instance in a group is appointed group leader. Because of this, adding a cluster

member with a name in between the list will cause group membership reorganization,

which will potentially affect service availability. The obvious solution to this is to use an

index, or another alphabetically sensitive identifier, to name server instances in a cluster,

so that WebLogic Server will add new servers to the end of the last group in a cluster.

In this context, it is very important that WebLogic Server instances playing the

group leader role in a cluster have enough resources available to them, particularly the

capacity to properly handle socket communications, so that they are able to both relay

cluster messages timely and consistently, in addition to performing their work as cluster

members themselves. It is recommended that instances use native IO11, or in other

words, the native socket reader, as opposed to the pure Java socket reader.

In general, unicast is a pretty good option for Oracle WebLogic Server cluster

messaging. However, Oracle does not favor one communication mode over the other.

Unicast is the default mode, but multicast is just as supported as unicast. As indicated

before, the decision to choose one mode over the other should always result from an

educated analysis of factors present in and around the target environments.

Figure 10-2 shows a view12 of how Oracle WebLogic Server cluster communication

flows when unicast mode has been selected.

11�Native IO may be enabled from the Tuning tab in the configuration of each server instance.
12�The diagram displays a simplified view, showing only the primary communication actors when

using unicast for Oracle WebLogic Server cluster communication.

Chapter 10 Clusters - Advanced

157

In Figure 10-2 a cluster of 20 nodes is represented. In this scenario, WebLogic Server

will create two groups of 10 cluster members and will alphabetically select the first

server of each group as leader. Managed server 2 in group 1 sets up a socket with its

group leader and starts sending messages (1). The leader of group 1 relays copies of the

message (2) to the leader of group 2, as well as to other members of its group. The leader

of group 2 will also relay copies (3) of the original message to its group members.

The following WLST method of the Cluster MBean object is used to set messaging

mode to unicast (Listing 10-2).

Listing 10-2.  Setting unicast cluster messaging

...

wls:/sample/edit/Clusters/cluster !> cd('/Clusters/cluster');

wls:/sample/edit/Clusters/cluster !> print(cmo)

[MBeanServerInvocationHandler]com.bea:Name=cluster,Type=Cluster

wls:/sample/edit/Clusters/cluster !> cmo.setClusterMessagingMode('unicast');

...

Unicast Cluster Messaging

Group 1

Group Leader Group Leader

Group 2

Managed Server 1 Managed Server 11

Managed Server 2 Managed Server 12

Managed Server 10 Managed Server 20

1

2

3

Cluster

Figure 10-2.  Cluster communication using unicast

Chapter 10 Clusters - Advanced

158

Invoking the above method is done precisely in the same order as in Listing 10-1,

same connecting, and start editing, but no address and port number are required, only

the argument to the method changes. Then the same saving and disconnecting applies.

�Replication Channels
In certain environments, it makes sense to ensure that cluster replication traffic goes

through a different channel than the default channel that is used for application traffic.

This can be very useful in troubleshooting communication issues in large production

environments.

A replication channel is a type of network channel, which were described in

Chapter 8. Cluster replication channels have the same general requirements as other

custom network channels13.

�Monitoring Clusters
Oracle WebLogic Server includes two resources that may be used to monitor a cluster.

The simplest is the cluster Monitoring page in the Administration Console. A more robust

tool is WebLogic Diagnostics Framework or WLDF, which is beyond the scope of this

book.

The cluster Monitoring page has two tabs that display basic runtime data that can

serve as a starting point when assessing the performance of a cluster. The first tab is

labeled Summary and presents a series of statistics of each cluster member. Figure 10-3

shows the contents of a modified14 cluster Summary tab.

13�There is a known circumstance with using cluster replication channels and SSL. This will be
touched on in Chapter 11, which deals with proxies and application session replication.

14�The table must be customized to show and hide values to match this view.

Chapter 10 Clusters - Advanced

159

From each cluster member, it displays the drop-out frequency, the current and total

count of open sockets, the count of data fragments received and sent, and the number of

resend requests.

These pieces of information present a good initial notion of how a cluster member

has been communicating over time.

The second tab presents the health status of each cluster member, as well as their

running status, from which we may implicitly derive cluster health. Figure 10-4 shows

the contents of the Health tab.

Figure 10-3.  Cluster monitoring summary of statistics

Figure 10-4.  Cluster health monitoring

Chapter 10 Clusters - Advanced

160

�Recommended Exercises
	 1.	 Configure a cluster to use multicast messaging mode.

	 2.	 Cause network communication to be interrupted between the

administration server and a managed server, check resulting

log errors.

	 3.	 Create a cluster replication channel and verify it is in use.

	 4.	 Customize the Summary tab page to display group membership

data for each cluster member.

	 5.	 Misconfigure multicast in a cluster and check resulting log errors.

�Certification Questions
	 1.	 Cluster communication occurs at the following TCP/IP network

layer:

a.	 Network

b.	 Transport

c.	 Application

d.	 None of the above

	 2.	 Select the protocols that WebLogic Server uses to replicate cluster

status information:

a.	 IP

b.	 TCP

c.	 UDP

d.	 All of the above

Chapter 10 Clusters - Advanced

161

	 3.	 What is the default cluster messaging mode in WebLogic Server

12c?

a.	 Unicast

b.	 Multicast

c.	 None of the above

	 4.	 A cluster member will be considered failed using unicast after

how many consecutive missed heartbeats?

a.	 One

b.	 Two

c.	 Three

d.	 None of the above

	 5.	 Select all prerequisites for using multicast for cluster messaging:

a.	 Network support

b.	 Address and port number

c.	 Native IO

d.	 All of the above

�Coming Up
In this chapter, we reviewed the fundamentals of cluster communication in Oracle

WebLogic Server. The next chapter builds on this to review cluster proxies and how a

cluster performs session replication.

Chapter 10 Clusters - Advanced

163
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_11

CHAPTER 11

Clusters - Proxies
As explained in previous chapters, clusters enable several Oracle WebLogic Server

instances to work together as if they were one and the same.

WebLogic Server clusters can replicate information across instances so that cluster

members are enabled to handle any incoming request, irrespective of whether the

request initiates a session, or is part of an existing session, including sessions initiated in

other WebLogic Server instances. This replication is required to support failover, which

shields applications from failure of individual instances. In connection with this, we

also discussed that clustering increases the capacity of applications to handle greater

workloads using the combined resources of all cluster members.

An Oracle WebLogic Server environment requires an external agent to distribute

the load of incoming requests across cluster members so that resources are used more

efficiently. This agent or proxy must also be capable of detecting when a server instance

is no longer available, to stop sending user requests to it.

How an Oracle WebLogic Server environment performs load balancing depends on

the traffic type. In this chapter, we focus on load balancing HTTP traffic.

We start by reviewing details about HTTP sessions and how WebLogic Server

handles HTTP session replication1, and then we discuss load balancing using supported

proxies, their different capabilities, and their configuration. We end the chapter by

looking at how session failover occurs.

�HTTP Sessions
Developers programming applications using Java EE web APIs, such as Servlet, require

the ability to persist small amounts of data across user requests. This data is used to track

what areas of an application users have visited and so forth. This is a simple yet critical

1�EJB, RMI, and JMS load balancing are out of scope of Oracle certification exam 1Z0-133.

164

feature required by most web applications. Oracle WebLogic Server uses cookies for

HTTP session management, with URL rewriting as an alternative.

Even though developers are in control of the amount and type of session information

that gets persisted, it is a best practice to not store more than the smallest amount of data

necessary to keep track of user activity.

Oracle WebLogic Server administrators must consider the amount of information

stored in sessions as an important factor that could adversely impact application

performance, given that session data will get updated, stored, and transferred over the

network before each HTTP response, for every user in the system. Therefore, it is critical

to accurately estimate the amount of session data and allocate commensurate resources.

This must account for the number of users, how large sessions are expected to grow, and

how long they are expected to last.

�Session Replication
Oracle WebLogic Server handles session persistence in a WebLogic Server cluster by

replicating HTTPSession objects that contain this data.

WebLogic Server implements hooks on the setAttribute and removeAttribute

methods of HTTPSession objects, to detect changes in session data. Therefore,

programmers are required to explicitly use these methods in order to have WebLogic

Server update the object accordingly across the cluster.

Also, in consideration that such data will get replicated over the network to other

server instances, it is a requirement to only store objects that are serializable2. Oracle

WebLogic Server will not replicate the session state of non-serializable objects.

�Replication Groups
In order to maximize the effectiveness of session replication, and to make session

replication not a single point of failure, Oracle WebLogic Server should be able to

replicate sessions on servers that are hosted on different hardware. This has several

connotations depending on the environment where the WebLogic Server domain has

been deployed.

2�Serialization is the process whereby an object is converted into a byte stream, suitable for
transfer and conversion back into an object.

Chapter 11 Clusters - Proxies

165

The default behavior is for session replicas to be created across WebLogic Server

machines. WebLogic Server makes the assumption that an administrator has taken care

of defining machines to run on separate hardware, which is the recommended way to

proceed in production environments.

When, for specific reasons, WebLogic Server is required to choose a particular set

of servers as candidates to create session replicas, an administrator may define and use

replication groups.

In a domain where both are configured, WebLogic Server machines and replication

groups, WebLogic Server will rank eligible servers to determine where to create

secondary session states, awarding the highest rank to those servers that both belong in

a machine and are members of a replication group.

Replication groups for a server instance can be configured in the Cluster tab of the

server configuration, by entering arbitrary replication group names in the Replication

Group and Preferred Secondary Group fields shown below in Figure 11-1.

�In-Memory Replication
In-memory replication of session state in Oracle WebLogic Server uses a primary-

secondary scheme. The primary session is always created in the server that receives

a user request for which no session exists. Once the request has been processed, but

Figure 11-1.  Fields to configure replication groups in a server instance

Chapter 11 Clusters - Proxies

166

before the response is sent3, session state is replicated to another server instance,

following the rules described above regarding WebLogic Server machines and

replication groups.

WebLogic Server ensures that the session management cookie contains a session

identifier and the encoded location of the primary and secondary session states4

formatted as follows: sessionid!primary!secondary!.

Note T he only way for WebLogic Server to determine session-server affinity is
by using the session ID data. If this is not available in a request, it will be treated
as new.

The type of agent that performs load balancing for an Oracle WebLogic Server cluster

determines how session failover5 is performed.

�Session Persistence
When using in-memory replication, session state remains available for as long as the

server instances involved are up and running. Should failure occur on both instances,

primary and replica, session state would be lost.

Protecting against these types of failures, and for additional requirements such as

replicating sessions across dispersed clusters in a WAN and so forth, a durable approach

is required to handle session state.

Oracle WebLogic Server offers the following alternatives to persist the state of

HTTPSession objects with greater durability than in-memory can offer.

•	 Database

•	 File

•	 Coherence*Web

With these options, session state would be available for recovery, even if the entire

cluster fails.

3�It is possible to configure WebLogic Server to use asynchronous session state replication.
4�As a non-default option, URL rewriting is available for clients that do not support cookies.
5�Session failover is discussed at the end of the chapter.

Chapter 11 Clusters - Proxies

167

By reason of the operations involved in saving, updating, and retrieving session

data from a database or from a file system, these session persistence methods are less

performant than in-memory.

When used in production environments, these options must run on highly available

infrastructure that is accessible by all cluster members.

As indicated, a typical use case for persisting session state in a database is an

environment that is distributed across multiple, geographically dispersed domains.

Coherence*Web is a good alternative when applications require handling large

HTTPSession objects6.

When selecting a method of session data persistence, unless an Oracle WebLogic

Server administrator is addressing a particular durability or capacity requirement, it is

recommended to start with the default, in-memory option, which has proven to work

well for applications with high user concurrency.

Session replication and persistence is configured per application in the Oracle

WebLogic Server descriptor file weblogic.xml, which must be included in the web

application file system structure from which a deployable package is created.

The weblogic.xml file contains a root element named weblogic-web-app, which

contains a session-descriptor element. This is where session configuration is specified.

Listing 11-1 shows an abbreviated weblogic.xml descriptor using in-memory persistence.

Listing 11-1.  Sample session-descriptor in weblogic.xml

<?xml version = '1.0' encoding = 'UTF-8'?>

<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app

http://xmlns.oracle.com/weblogic/weblogic-web-app/1.7/weblogic-web-app.xsd"

 xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">

...

 <session-descriptor>

 <persistent-store-type>REPLICATED</persistent-store-type>

 </session-descriptor>

...

</weblogic-web-app>

6�Oracle Coherence is out of scope of Oracle certification exam 1Z0-133.

Chapter 11 Clusters - Proxies

168

The session-descriptor element is the container for all arguments relative to how

sessions are identified, replicated, and persisted. The acceptable data is specified by the

weblogic-web-app XML schema.

�JDBC Persistence
JDBC persistence stores session data in a database. It requires all cluster members to be

able to access the target database reliably and swiftly7. The steps required to configure

session persistence on a database are the following:

	 1.	 Create the target database table.

	 2.	 Configure a connection pool to the target database.

	 3.	 Configure deployment descriptors to use database session

persistence.

The database schema required for database persistence is available in the Oracle

Fusion Middleware documentation8, and may be adapted for several database

management systems for which there is a supported JDBC driver. Listing 11-2 shows the

schema, customized for Oracle DB.

Listing 11-2.  Oracle DB schema for JDBC session persistence

create table wl_servlet_sessions (

 wl_id VARCHAR2(100) NOT NULL,

 wl_context_path VARCHAR2(100) NOT NULL, wl_is_new CHAR(1),

 wl_create_time NUMBER(20),

 wl_is_valid CHAR(1),

 wl_session_values LONG RAW,

 wl_access_time NUMBER(20),

 wl_max_inactive_interval INTEGER,

 PRIMARY KEY (wl_id, wl_context_path)

);

7�Accessing databases using JDBC is the subject of an upcoming chapter.
8�The code is available in chapter 10 of the Developing Web Applications for WebLogic Server
book.

Chapter 11 Clusters - Proxies

169

The database schema defines a table named wl_servlet_sessions with eight columns.

The first two conform to the primary key, and indexes must be created from them. The

actual session data is stored in a binary column named wl_session_values.

The connection pool to the target database must be configured with read-write

access to the corresponding table, and its name must be referenced in the session-

descriptor element in the weblogic.xml deployment descriptor.

Listing 11-3 shows a sample session-descriptor element configured for JDBC

persistence.

Listing 11-3.  JDBC session persistence configuration in weblogic.xml

<session-descriptor>

 <persistent-store-type>JDBC</persistent-store-type>

 <persistent-store-pool>HTTPSESSIONS</persistent-store-pool>

</session-descriptor>

The above configuration requires a data source9 named HTTPSESSIONS made

available to all cluster members.

�File Persistence
File persistence stores session data in a file system. The fundamental requirement for

production systems is that the target file system resides on highly available storage. It is

also necessary to ensure that the target directory grants the WebLogic Server processes

read and write privileges, as well as configuring the weblogic.xml deployment descriptor

accordingly. Listing 11-4 shows a sample session-descriptor element configured for file

persistence.

Listing 11-4.  File session persistence configuration in weblogic.xml

<session-descriptor>

 <persistent-store-type>FILE</persistent-store-type>

 <persistent-store-dir>/opt/weblogic/sessions</persistent-store-dir>

</session-descriptor>

9�A data source in WebLogic Server is a domain configuration item that specifies a target database,
the URL where it may be reached, and credentials to access the data.

Chapter 11 Clusters - Proxies

170

The above configuration requires a highly available storage device mounted on path:

/opt/weblogic/sessions. The same mount point must be made available to all servers in

which cluster members run.

�Session Cache
Since persisting session state durably is I/O expensive, in order to enhance performance,

both JDBC and file session persistence can cache in memory a configurable number of

sessions10. Listing 11-5 shows a sample session-descriptor element configured to cache

sessions.

Listing 11-5.  Session caching configuration in weblogic.xml

<session-descriptor>

 <cache-size>2056</cache-size>

</session-descriptor>

This configuration would enable a session cache that is twice greater than the default

value.

When the maximum number of cached sessions is reached, the least used sessions

are removed from memory, in order to accommodate new sessions.

Session cache is enabled in the weblogic.xml deployment descriptor by setting a

positive integer value to the cache-size element. This element is also a child element of

the session-descriptor element.

The documented default cache size is 1028. Setting this to a value of 0 will explicitly

disable session cache.

�Proxies
Proxies are the first level of interaction with an Oracle WebLogic Server cluster. They

sit between clients and WebLogic Server clusters. They receive resource requests

from clients, pass them to cluster members for processing, receive their responses,

and forward them back to the clients that originated them. Proxies also perform load

balancing of client requests to cluster members. Proxies may be software or hardware

based. Oracle WebLogic Server supports both types.

10�This session caching mechanism is only available to JDBC and File session persistence.

Chapter 11 Clusters - Proxies

171

�Hardware Proxies
Support in Oracle WebLogic Server for hardware load balancers is broader than for

software-based load balancers. Most hardware load balancers that comply with the

following requirements will work well with WebLogic Server:

	 1.	 Supports TLS persistence

	 2.	 Supports passive cookie persistence

	 3.	 Supports active cookie persistence using their own cookie

When using hardware load balancers, administrators can leverage advanced load

balancing algorithms, as well as other extended capabilities such as selection of targets

based on request inspection and so forth.

This is also applicable to load balancers that offer the same functionality of their

hardware devices, deployable on hypervisors, or as cloud appliances, such as the well-

known F5 series by BIG-IP Networks.

The general process to configure a hardware load balancer will commonly require

creating a server pool with WebLogic Server cluster members as targets, selecting a load

balancing algorithm, creating applicable traffic rules, and ensuring that sticky sessions

are working, based on the WebLogic Server session cookie.

�Software Proxies
Load balancing an Oracle WebLogic Server cluster using a software-based load balancer

is generally more limited than when using hardware-based alternatives. Typically, the

sole load balancing algorithm available is round-robin.

Nevertheless, where software-based load balancers excel, is in their ability to learn

about failed cluster members proactively, as opposed to learning that instances have

failed solely as a result of not receiving responses after requests have been sent to them.

Failed instances detection capability is a capability of a module or plug-in provided

by Oracle WebLogic Server for certain HTTP servers. Because of this, third-party

software-based proxies are only supported when the WebLogic Server proxy plug-in

module has been installed and configured.

Chapter 11 Clusters - Proxies

172

The WebLogic Server proxy plug-in maintains a list of cluster members; because of

this, it is also able to locate session replicas.

Supported Oracle WebLogic Server software load balancers include11:

•	 Oracle WebLogic Server with HTTPClusterServlet

•	 Oracle HTTP Server

•	 Apache HTTP Server

The general process to configure a software-based load balancer with WebLogic

Server is similar to the one described for hardware-based load balancers, that is, a server

pool that includes at least a single cluster member must be configured, along with the

required URL mappings to be proxied.

�HTTPClusterServlet

This option requires setting up a WebLogic Server managed instance that is separate

from the target WebLogic Server cluster. On this instance, a simple servlet application

named HTTPClusterServlet12 is configured as the root context.

Configuring this option requires editing the deployment descriptors weblogic.xml

and web.xml. The configuration essentially defines that the main servlet class weblogic.

servlet.proxy.HttpClusterServlet will respond to certain URL patterns, and will bind to the

root context of the server instance.

Setting up load balancing using HTTPClusterServlet is comparatively more complex

and also less robust than other software-based options.

�Oracle HTTP Server

Oracle HTTP Server bundles a customized version of Apache HTTP server and a

WebLogic Server proxy plug-in.

Oracle HTTP Server is installed using Oracle Universal Installer, which is also used to

install Oracle WebLogic Server. The general process looks familiar therefore. Figure 11-2

shows the Installation Type screen.

11�Oracle Traffic Director is another excellent choice for load balancing a WebLogic Server cluster,
available for Oracle Exalogic engineered systems. Internet Information Server 8.0 and 8.5 with
the proxy plug-in is also an alternative for Microsoft Windows systems.

12�The HTTPClusterServlet application is provided as part of Oracle WebLogic Server.

Chapter 11 Clusters - Proxies

173

The image above shows that Oracle HTTP Server, or OHS as it is commonly referred

to, may be installed in one of two modes, either standalone or collocated. In standalone

mode, OHS is managed in an OHS domain, whereas in collocated mode, OHS is

managed as part of an existing WebLogic Server domain.

Note O racle HTTP Server domains are different than WebLogic Server domains.
OHS servers in an OHS domain are Apache HTTP servers. However, both domain
types work with the Java-based Node Manager.

Because of component dependencies, installing OHS in collocated mode requires

an existing Oracle Fusion Middleware Infrastructure home13. In both modes, Oracle

HTTP Server may be managed through product-provided scripts and WLST commands.

13�As opposed to installing on a WebLogic Server-only Oracle home. Refer to Chapter 2 for details
about using a Fusion Middleware Infrastructure distribution to install WebLogic Server.

Figure 11-2.  Oracle HTTP Server Installation Type screen

Chapter 11 Clusters - Proxies

174

Additionally, in collocated mode, OHS can also be configured and managed using the

Enterprise Manager console graphical user interface.

An administrator may configure OHS domains using its configuration wizard, which

uses the same structure, look, and feel of the WebLogic Server configuration wizard.

The corresponding config.sh file to start the wizard is located in the ohs/common/bin

directory of the OHS Oracle home.

Rather than JVM-based server instances, OHS has system components14. When

configuring OHS servers using the configuration wizard, listen addresses and port

numbers for both administrative traffic as well as client traffic are required. Figure 11-3

shows the OHS Server configuration screen.

The image shows an OHS server named ohs1, which is listening for administrative

traffic on port 9999, and for HTTP client traffic on port 7777 and TLS-enabled traffic on

port 8888, all on private IP 172.16.100.100. Most commonly, however, the configured ports

for client traffic in a production environment would be 80 for HTTP and 443 for HTTPS.

14�Additional system component types in Oracle Web Tier are beyond the scope of our analysis.

Figure 11-3.  OHS server configuration screen

Chapter 11 Clusters - Proxies

175

As with WebLogic Server JVMs, once an OHS instance is started, it creates network

sockets, and binds to them to start listening for user requests.

Once OHS is installed, the actual WebLogic Server plug-in that enables load

balancing requests for a cluster must be configured. The configuration can be manually

performed by editing the directives in a mod_wl_ohs.conf file located at DOMAIN_

NAME/config/fmwconfig/components/OHS/instances/OHS_NAME where DOMAIN_

NAME is the domain directory, and OHS_NAME is the name of the OHS component.

Apache HTTP Server users will be glad to know that the mod_wl_ohs.conf file follows

the Apache configuration format.

An IfModule section for a weblogic_module that contains the required directives to

load balance requests for an Oracle WebLogic Server target, server, or cluster must be

defined. The URL bindings and their targets are defined in a Location directive within

IfModule, as shown in Listing 11-6.

Listing 11-6.  Oracle WebLogic Server plug-in configuration in OHS

<IfModule weblogic_module>

 <Location /hello>

 WLSRequest On

 WebLogicCluster 172.16.100.101:8001,172.16.100.102:8001

 </Location>

</IfModule>

The above configuration would load balance requests for /hello, across members of

a WebLogic Server cluster, listening on port 8001, in private IP addresses 172.16.100.101

and 102.

Note I t is possible to configure TLS termination in OHS by adding directives
WLProxySSL and WLProxySSL to the Location section.

The final configuration step requires enabling, in the target WebLogic Server

domain, a parameter named WebLogic Plug-In Enabled. This can be performed either

at the server level for each cluster member, or at the cluster level itself. When set, this

parameter will cause WebLogic Server instances to employ a custom HTTP header

named WL-Proxy-Client-IP. This header will store the IP address of the actual client that

originated the request, rather than the OHS address.

Chapter 11 Clusters - Proxies

176

Once the plug-in has been configured, OHS may be started by invoking the

startComponent script in the bin directory of the OHS domain, passing an OHS server

name, as shown in Listing 11-7.

Listing 11-7.  Command to start an OHS system component in Linux

DOMAIN_NAME/bin/startComponent.sh ohs1

The above command would contact the underlying Node Manager process and

request from it to start an OHS instance named ohs1.

�Apache HTTP Server

Apache HTTP Server is a very mature product from Apache Software Foundation. It

enjoys a pretty solid reputation as a very stable and reliable product for serving HTTP

loads.

Oracle supports versions 2.2. and 2.4 of Apache HTTP Server as a proxy for WebLogic

Server clusters. The version to use depends on the version of WebLogic Server to proxy

for. For WebLogic Server 12c, the required version is Apache 2.4.

Installing Apache HTTP Server is beyond the scope of our analysis, but it is

certainly a simple task given that it can be installed using package managers in Linux

distributions, as well as from binary distributions for other operating systems such as

Microsoft Windows.

Once Apache has been installed, the Oracle WebLogic Server plug-in must be

downloaded from Oracle, and extracted to a file system. The configuration process is

longer than with OHS because, in essence, we must manually perform the integration

steps that Oracle has done in OHS, as well as checking the option WebLogic

Plug-In Enabled either at the domain or server level, as done when configuring OHS.

The configuration process comes down to this:

	 1.	 Adding the lib directory from the plug-in distribution to the value

of the LD_LIBRARY_PATH system variable on Unix/Linux, or to

the value of the PATH system variable on Microsoft Windows.

	 2.	 Verifying that the mod_so.c Apache module is enabled by

executing apachectl -l

Chapter 11 Clusters - Proxies

177

	 3.	 Adding a LoadModule directive to Apache HTTP Server

configuration (httpd.conf) to enable support for the WebLogic

Server plug-in.

	 4.	 Adding IfModule and Location directives to Apache HTTP Server

configuration (httpd.conf) to configure the plug-in.

	 5.	 Verifying the syntax of the edited configuration file (httpd.conf) by

executing apachectl -t

The code in Listing 11-8 below illustrates the required additions to an Apache

HTTP Server main configuration file, in order to configure it to load balance an Oracle

WebLogic Server cluster.

Listing 11-8.  Additions to Apache httpd.conf file

...

LoadModule weblogic_module /opt/weblogic-plugins-12.1.3/lib/mod_wl.so

...

<IfModule mod_weblogic.c>

 <Location /hello>

 WLSRequest On

 WebLogicCluster 172.16.100.101:8001,172.16.100.102:8001

 </Location>

</IfModule>

The code above would configure an Apache HTTP server to load the WebLogic

Server plug-in that was extracted to path /opt/weblogic-plugins-12.1.3. It would load

balance requests just like in the OHS example before.

�Deployment Architectures
There are several deployment options available to load balance traffic incoming to an

Oracle WebLogic Server cluster.

In the simplest deployment approach, an HTTP server configured with the WebLogic

Server Proxy plug-in is placed in front of a WebLogic Server cluster. It can be any of the

software-based options discussed.

Chapter 11 Clusters - Proxies

178

As stated, this is considered a basic alternative given that load balancing using these

products is restricted to round-robin only. This restriction is only natural due to the

fact that HTTP servers were really not built to perform load balancing and other related

tasks. Load balancing was added later, as a useful convenience.

A variation of this approach is using a hardware-based load-balancing device or

its cloud appliance counterpart. One could argue that a software-based version of a

hardware load balancer is better than an HTTP server with the WebLogic Server plug-

in15, and the reason should be apparent. When working with a physical hardware load-

balancing device, one gets to work with specialized hardware and software.

When working with cloud appliances from hardware-based load-balancing

manufacturers, one still gets the specialized software, and because of the nature of the

cloud, there is freedom to run the instance in as powerful hardware as desired; therefore,

no performance penalties need be suffered.

According to this, using an HTTP server with the WebLogic Server plug-in may

not be the right solution in cases where an administrator must satisfy advanced

requirements such as performing request mangling, or employing complex load-

balancing algorithms.

Another, more robust deployment approach is available. It involves taking advantage

of the features offered by both alternatives, software-based and hardware-based proxies,

in a single deployment. In other words, this involves placing a hardware-load balancer in

front of a cluster of HTTP Servers with the WebLogic Server plug-in configured, which in

turn fronts a cluster of Oracle WebLogic Servers.

This approach provides an Oracle WebLogic Server environment with the

specialized features of a hardware load balancer, and the proactive health monitoring

capability of the WebLogic Server plug-in, as well as room for security and performance

enhancements.

Figure 11-4 shows a view of the fully distributed proxy deployment architecture.

15�Though often confirmed, this assertion should be considered a general guideline, not meant to
replace due requirements analysis efforts.

Chapter 11 Clusters - Proxies

179

The image shows that by offloading static content to the web tier, one may gain

in performance. It is easy from this view to conceive that firewalls may be placed

between the hardware load balancer and the web tier, and between the web tier and the

WebLogic Server cluster, as well as between the WebLogic Server cluster and the data

tier or other system back ends.

�Session Failover
We have reviewed that Oracle WebLogic Server has built-in session replication

capabilities, which out of the box are operative and sufficient for basic clustering

requirements, and that many HTTP session durability and size requirements can be

easily addressed by configuration.

We have also reviewed the types and features of agents or proxies that sit between

actual clients and the Oracle WebLogic Server cluster members.

Despite the fact that hardware load balancers have been referred to as a preferred

choice for advanced load balancing requirements, when it comes to Oracle WebLogic

Server session failover, they are somewhat limited. Specifically, once a hardware load

balancer has determined the target instance to which it will forward a request, based on

its configured load-balancing algorithm and associated rules, it won’t matter whether

WebLogic Server
Fully Distributed Architecture

Hardware
Load Balancer

OHS Server

plug-in

OHS Server

plug-in

OHS Server

plug-in

Managed Server Managed Server

Servlet EJB

Managed Server

EJB

Managed Server

EJB

Managed Server

Servlet

Managed Server

Servlet

Presentation ClusterWeb Tier Cluster Business Cluster

WebLogic Server DomainOHS Domain

Figure 11-4.  Fully distributed proxy deployment architecture

Chapter 11 Clusters - Proxies

180

or not the instance has failed, it will still send the request nonetheless. It is until the

load balancer notices that there was no response from the target, that it will adjust and

forward the request to another target, and so on, until one of the target instances in its

pool processes and responds to the request. This is precisely the circumstance that the

WebLogic Server plug-in aims to avoid.

Note T he respective limitations of both, hardware load balancers and HTTP
servers with the WebLogic Server plug-in, are resolved when deployed side by
side, forming a composed front tier.

Since hardware load balancers can send requests to Oracle WebLogic Server

instances that may not be actively maintaining the required session state, the target will

use the information in the session management cookie16 to locate the secondary session

replica and be able to process the request. From this point on, this target instance will

become the primary session maintainer and will update the session management data

before sending a response.

The key aspect when working with the WebLogic Server plug-in is its ability to

maintain a dynamic list of cluster members. Plug-ins have a DynamicServerList property

set to ON by default. This controls whether the plug-in will automatically adapt to

changes in cluster membership17.

Oracle WebLogic Server will return to the plug-in, as part of a server response, an

updated list of cluster instances whenever changes in membership occur. This is the

process whereby WebLogic Server seeks to go a bit further in anticipating failure.

If the WebLogic Server plug-in encounters a scenario where the instance

maintaining the primary session state does not respond, it will not send the request to

just the next instance according to the load balancing algorithm it uses; instead, since it

is able to use the information in the session management cookie, it will directly forward

the request to the WebLogic Server instance hosting the session replica, and the rest of

the process occurs in a similar fashion as described before18.

16�The session management information is comprised of the session ID, and the location of the
primary and secondary WebLogic Server instances maintaining the session state.

17�The servers in the plug-in configuration are just a starting point for load balancing and failover.
18�Additional HTTP session replication and failover scenarios exist, most of which involve

replicating and failing over and across disparate WebLogic Server clusters. These scenarios are
not covered in exam 1Z0-133.

Chapter 11 Clusters - Proxies

181

�Recommended Exercises
	 1.	 Install and configure an OHS system component in Oracle HTTP

Server 12c.

	 2.	 Install and configure the WebLogic Server plug-in in Apache

HTTP Server 2.4.

	 3.	 Enable instances in a cluster to use the WebLogic Server plug-in at

the server level.

	 4.	 Configure an application to use JDBC session persistence.

�Certification Questions
	 1.	 WebLogic Server replicates session information stored in: …

a.	 Database

b.	 File system

c.	 HTTPSession objects

d.	 Coherence*Web

	 2.	 Durable session persistence mechanism:

a.	 In-memory

b.	 Replicated

c.	 JDBC

d.	 File

	 3.	 Load balancing algorithms supported by the WebLogic Server

plug-in:

a.	 Round-robin

b.	 Weighted

c.	 Sticky

d.	 All of the above

e.	 None of the above

Chapter 11 Clusters - Proxies

182

	 4.	 Methods to improve session replication performance:

a.	 Database

b.	 Asynchronous replication

c.	 File system

d.	 Session cache

	 5.	 HTTP session configuration data is stored in:

a.	 weblogic.xml

b.	 web.xml

c.	 wl_servlet_sessions

d.	 None of the above

�Coming Up
In the next chapter, we will review the fundamentals of database access: how data

sources are configured and made available to selected server instances in an Oracle

WebLogic Server domain.

Chapter 11 Clusters - Proxies

183
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_12

CHAPTER 12

JDBC
It is probably fair to say that an overwhelming majority of today’s applications generate,

consume, and persist data during the course of user sessions and system interactions.

For this purpose, applications interact with all sorts of data storage systems, depending

on the nature and format of the data involved. This chapter is about the technology

that Oracle WebLogic Server employs to interact with a particular type of data storage,

namely, database management systems.

Data stored in a DBMS is referred to as structured data because, in order to be

acceptable to the data store, it must conform to a predefined schema design. If data

does not conform to the schema, it may not be acceptable to the underlying DBMS at all.

Oftentimes, even if it gets stored, it may represent corrupt information that will diminish

the use and value of the data. Designing structured data schemata and managing

structured data stores is a discipline on its own, the field of DBAs.

Obviously, applications also generate, consume, and persist data that is unstructured,

such as images, documents, and so forth. This type of data is equally important to

businesses; it is just managed and stored differently. Managing unstructured data is also

a discipline on its own, commonly dealt with in the field of big data.

Despite the relatively recent explosion of data generation of all types in the

digital world, structured data still maintains an important spot in the realm of data

management. Structured data is very frequently used in OLTP or transactional systems

such as enterprise applications that have a web UI.

In this chapter, the architecture of Java Database Connectivity or JDBC is touched,

followed by a review of its main concepts, as well as how Oracle WebLogic Server

uses the corresponding objects to process the interaction between applications and

databases in a DBMS1.

1�Examples in this chapter use Oracle Database Express Edition version 11g Release 2, which is
lightweight and free.

184

�Architecture
As with other Java APIs, JDBC is a standard specification that is platform and vendor

neutral. It defines the details required for an application to access and work with data

stored in a DBMS.

A fundamental component of the specification is the JDBC driver. DBMS vendors

provide a driver that enables their products to be accessible using Java technology. The

driver is the actual interface for Java to interact with the DBMS using structured query

language or SQL2. According to this, applications running on a JVM are capable of

accessing any data store, on any platform, for which there is a JDBC driver.

Fundamental as they are, applications do not directly use JDBC drivers though.

In order to access data stores, applications interact directly with a higher-level JDBC

concept, the data source, and with its related objects. Data sources then use the

underlying driver to translate JDBC calls into native data store calls. Figure 12-1 shows

these JDBC architecture components in the context of an Oracle WebLogic Server

domain.

Figure 12-1 shows that a data source exists in the context of a server instance, on

which both applications and drivers are installed and deployed.

2�Even though some database management systems implement and provide Java drivers to their
systems, not all of them are JDBC drivers. This is especially true with non-relational systems.

WebLogic Server
JDBC Architecture

Application Driver

WebLogic Server

Data Source

WebLogic Server Domain

Database

Figure 12-1.  JDBC architecture

Chapter 12 JDBC

185

Generally speaking, administrators must be aware of fundamentally two types of

JDBC drivers: those which require no client configuration and those which do. The former

type is referred to as pure Java or a type 4 driver. The latter is named type 2 and requires

some client configuration, such as properly installing native libraries it depends on3.

Oracle WebLogic Server ships with several JDBC type 4 drivers. These are already

included in the server CLASSPATH and thus loaded on server startup, ready for

applications to use. These drivers enable access to Oracle Database, as well as to certain

versions of the following database management systems:

•	 DB2

•	 Informix

•	 Sybase

•	 SQL Server

•	 MySQL

As stated before, because of JDBC, WebLogic Server instances are also able to interact

with other database management systems beyond those listed above; in fact, WebLogic

Server can work with virtually any DBMS for which a suitable JDBC driver is available.

The configuration to enable WebLogic Server to interoperate with other database

management systems is a simple two-step process. First, the corresponding driver must

be installed in a location in filesystem that is accessible to the server process. Second, a

reference to the driver library must be added to the server CLASSPATH.

�Data Sources
From the perspective of an application server, data sources are a method to manage

connectivity to data stores. This implies also the ability to centralize configuration for all

deployed applications to use.

From the perspective of an application, data sources are some of the actual objects

that are used to interact with a data store.

Creating a data source in Oracle WebLogic Server means defining its configuration,

which must include at least the target data store location, credentials, and database name.

3�JDBC type 2 drivers are generally out of use.

Chapter 12 JDBC

186

In an Oracle WebLogic Server domain, data sources configuration is referenced in

the main server configuration file but persisted separately, in individual XML files. These

files are referred to as JDBC modules.

JDBC modules are of two types, system or application modules. System modules are

created by administrators using either the WebLogic Server Console or programmatically

using WLST. System modules are persisted in the config/jdbc domain directory4.

Each data source contains a pool of connections to target databases. Connection

objects represent physical connections to target data stores and are used by applications

to issue SQL commands.

Connection pools can grow or shrink on demand. It is possible to configure

minimum and maximum numbers of connections in the pool, as well as a specific

number of connections to increment over time up to the maximum capacity.

Figure 12-2 displays the relationship of components in a data source.

Figure 12-2 shows that an application uses a connection object to directly access a

data store. A connection object is one of several in a pool, and it is only available in the

context of a data source object.

4�Application JDBC modules are included within application deployable packages and are
prepared by developers.

WebLogic Server
JDBC Data Source

Connection 1

Connection 2

Connection N

...

Pool

Data Source

Driver

Database

Figure 12-2.  JDBC data source components

Chapter 12 JDBC

187

Data sources and their connection pools are created either at server startup or, in the

case of an already running server, when they are deployed.

�Configuration
Even though data sources have a rich set of properties that define their behavior, creating

one is possible with just a small subset of essential properties, including:

•	 Name and JNDI name

•	 DBMS and driver

•	 Database name

•	 Hostname and port number

•	 Username and password

When using the Administration Console to create a data source, and once an

administrator has filled these properties in, a new screen appears that enables testing

connectivity to the target data store. Testing is not mandatory before creating the data

source module. Immediately after this, WebLogic Server presents the server instances

in the domain on which the data source can be deployed. This step is also optional, but

when no server is selected for deployment, the data source module is created but no

actual data source objects will be instantiated.

When administrating production systems, several important and more advanced

properties should be configured. The most relevant properties in this context are those

related to capacity and connection testing.

With regard to capacity, as mentioned before, it is possible to specify the minimum

and maximum number of connections that the pool will contain. When the minimum

is smaller than the maximum, one may also define the number of connections to add

every time the existing connections are used up. Connection capacity is an important

aspect to keep in mind when connections to the database are restricted by aspects

such as licensing or compute resources availability. When configuring the number of

connections available to a data source, one must account for these settings times for

each server where the data source is deployed. For instance, in the two figures shown

before, a single data source deployed to a cluster of two managed servers will require

twice as many connections as the maximum capacity configured.

Chapter 12 JDBC

188

The configuration to test connections is a very important aspect of production

performance since without this, or without additional help from the database

management system, WebLogic Server would serve connection objects that point to a

stale or broken connection. Configuring connection testing will force WebLogic Server

to test the connection before passing it to the requesting application. Connection testing

may be enabled or disabled for each data source. When enabled, one may also configure

testing frequency.

Once created, data sources are bound to the JNDI tree of a server instance. When

applications require access to a data store, they look them up by their JNDI name in the

JNDI tree, and obtain a reference through which they perform their work on the data

store. Once they are done using it, they close the connection object.

Note T he close() method of the connection object does not actually close the
connection to the data store. WebLogic Server returns the connection to the pool,
for other clients to use.

Administrators can view data sources that have been configured in a domain by

using the WebLogic Server Administration Console, under the Services option on the

left-side Domain Structure navigation panel. The page lists all data sources configured

in the domain, irrespective of whether they have actually been instantiated or even

targeted to any server. Figure 12-3 displays the Summary of the JDBC Data Sources page.

Figure 12-3.  JDBC Data Sources page in the Administration Console

Chapter 12 JDBC

189

Figure 12-3 shows a single data source. It also shows the data source type and its

JNDI name. Data source types will be discussed later in this chapter. JNDI name is one of

the required properties when creating or configuring a data source, and is the property

that developers need to use to look up the data source in order to connect to the data

store it represents.

Administrators may also need to see what data sources in a given server exist at

runtime and that are available for applications to use. This is possible by accessing

the main configuration page of each server instance; near the top of the page under

the Configuration and General tabs, there is a link to the JNDI Tree that lists all objects

that have been registered. Data sources are shown under the JDBC node on the left.

Figure 12-4 displays what a JNDI tree from a running server looks like.

Figure 12-4 shows the JNDI tree of a managed server named mserver1, and just

like the previous figure displays a single data source. It shows details of the actual data

source object5 including its class name and additional information about its deployment

configuration.

Once data sources are created, the application server is responsible to manage the

pooled connection objects in each data source, according to the properties defined

in its configuration. This includes verifying the health of the connections that objects

represent. When connection objects fail to reach the target data store, they are closed

5�Objects listed in the JNDI tree are actual runtime system resources deployed on a server.

Figure 12-4.  JNDI Tree of a Managed Server

Chapter 12 JDBC

190

and released, connections are reestablished and new connection objects pointing to

them are instantiated.

Connection objects can be used with both one-time, ad-hoc SQL queries, or with

prepared or callable statements, which as their names imply, represent commands or

queries that are expected to be run more than once, often only differing in argument

values. Prepared or callable statements are in general more efficient than ad hoc queries

as they may also be prepared, optimized, and cached at the data store itself. Each

connection object gets a manageable cache of prepared statements.

�Transactionality
Sometimes applications require distributed transactionality. Typical scenarios include

situations where multiple database updates are required, or when resources of different

types such as a database and a messaging destination are updated as part of a single,

logical transaction, as well as when EJB technology is being used in WebLogic Server to

manage transactions.

Although a more detailed discussion on transactions is deferred to a later chapter,

the following are the general options to consider when configuring a JDBC data source to

support these requirements.

•	 XA Drivers

A data source may be configured with support for the XA protocol6

by simply selecting an XA-enabled JDBC driver. Selecting an XA

driver will automatically enable and use Two-Phase Commit as a

global transaction protocol.

•	 Non-XA Drivers

When a non-XA JDBC driver is used in a data source, transactions

are treated as local by default unless support for global

transactions is explicitly enabled. When enabled, a specific option

to support global transactions must be selected too. The options

are Logging Last Resource, emulate two-phase commit, or use

single-phase commit. In general, logging last resource is preferred

6�The XA specification was created by Open Group, and it is supported in most major database
management systems.

Chapter 12 JDBC

191

over emulate two-phase commit for performance and data safety.

Single-phase commit may be used when the data source is the

only participant in a global transaction.

�Monitoring and Control
The Oracle WebLogic Server administration console provides a configurable page that

displays runtime statistics of a data source. Accessing the main page of any data source

displays several tabs, including one labeled Monitoring. This displays two additional

tabs, one labeled Statistics and the other Testing.

Accessing the testing tab displays a page listing the deployed instances of the data

source, and allows testing connectivity from the server where the data source was

deployed to the targeted data store.

The statistics tab displays a table, and on top of that table a link with text “Customize

this table.” From there, a number of statistics can be added to the table below. Some of

the most relevant in day-to-day administration of JDBC connections are these:

•	 Active connections current count

•	 Active connections average count

•	 Current capacity

•	 Highest number available

•	 Waiting for connection high count

Statistics labels are mostly self-explanatory. Those labeled average and high or

highest are aggregations from the time the corresponding data source was created. Of

particular interest for administrators working on production systems may be correlating

the waiting for connection counts with the statistics indicating capacity and active

connections.

The tab labeled Control is very important in day-to-day WebLogic Server

administration as it enables performing suspend and resume, as well as start and

shutdown operations on the data source, which is required in preparation for graceful

application shutdown.

From the control tab, it is also possible to shrink or reset data source connections, as

well as to clear the prepared statement cache.

Chapter 12 JDBC

192

�Debugging
There are three methods available to configure debug mode on a data source, namely,

WLST, the administration console, and JVM arguments7. Listing 12-1 is an example how

JDBC debug is enabled on a data source.

Listing 12-1.  Enabling JDBC debug using WLST

wls:/offline> connect('weblogic','...','...');

wls:/sample/serverConfig> edit()

wls:/sample/edit !> startEdit()

wls:/sample/edit !> cd('/Servers/mserver1/ServerDebug/mserver1')

wls:/sample/edit/Servers/mserver1/ServerDebug/mserver1 !>

set('DebugJDBCSQL',true);

wls:/sample/edit/Servers/mserver1/ServerDebug/mserver1 !> save()

wls:/sample/edit/Servers/mserver1/ServerDebug/mserver1 !> activate()

wls:/sample/edit/Servers/mserver1/ServerDebug/mserver1> exit()

The sample changes in server mserver1 take effect immediately, without requiring a

server restart. Listing 12-2 shows two log entries from the same server after the changes

were activated.

Listing 12-2.  JDBC debug entries on server log file

####<20-Sep-2017 12:43:24 o'clock PM CDT> <Debug> <JDBCSQL> <apress.

garnica.mx> <mserver1> <[ACTIVE] ExecuteThread: '1' for queue: 'weblogic.

kernel.Default (self-tuning)'> <<WLS Kernel>> <> <> <1505929404329>

<BEA-000000> <[[oracle.jdbc.driver.T4CXAConnection@6af53acb, owner=null,

rmConn=oracle.jdbc.driver.LogicalConnection@9e71c49]] isValid()>

####<20-Sep-2017 12:43:24 o'clock PM CDT> <Debug> <JDBCSQL> <apress.

garnica.mx> <mserver1> <[ACTIVE] ExecuteThread: '1' for queue: 'weblogic.

kernel.Default (self-tuning)'> <<WLS Kernel>> <> <> <1505929404329>

<BEA-000000> <[[oracle.jdbc.driver.T4CXAConnection@6af53acb, owner=null,

rmConn=oracle.jdbc.driver.LogicalConnection@9e71c49]] isValid returns true>

7�Activating the ServerDebug option is persisted in the main domain configuration file.

Chapter 12 JDBC

193

Log entries shown above display how WebLogic Server is internally verifying the

validity of a connection. The JVM arguments required to enable the same are weblogic.

debug.DebugJDBCSQL with a value of true, and weblogic.log.StdOutSeverity with a

value of Debug.

Enabling JDBC debug mode from the administration console is performed by

accessing the debug tab of the main configuration page of the selected server. Here,

a number of scopes where debug mode is available are listed. The JDBC scopes are

available under nodes WebLogic then JDBC. Interesting JDBC scopes include:

•	 DebugJDBCSQL - JDBC methods invoked

•	 DebugJDBCConn - connection reserve and release

•	 DebugJDBCRMI - Similar to SQL, at RMI level

•	 DebugJTAJDBC - trace transactions

The connection scope also shows messages regarding applications getting and

closing connections.

�Multi Data Sources
When we covered Oracle WebLogic Server clustering in a previous chapter, we

commented on the basic need to implement redundancy in order to increase availability

in the middleware infrastructure. The exact same thing is obviously required at every

tier in enterprise computing. This poses a requirement on JDBC implementations. Since

JDBC connections target a single data store, how should redundant data stores, such

as Oracle RAC, be handled at the JDBC level? The answer in Oracle WebLogic Server is

through multi data sources, which are abstractions over multiple generic data sources.

Figure 12-5 shows the architecture of a multi data source in Oracle WebLogic Server.

Chapter 12 JDBC

194

Figure 12-5 shows that a multi data source comprises multiple generic data sources,

each with their own connection pool, targeting a single data store node.

The list of generic data sources behind a multi data source is dynamic.

Administrators may add or remove member data sources without taking the multi data

source offline8.

Multi data sources are locatable by applications just as regular data sources, but

include the functionality required and configurable to manage a set of data sources.

Perhaps the most relevant feature of a multi data source is its ability to internally

determine which data source to use when requested a connection, use either load

balancing or failover, thus increasing the reliability of the data source for the requesting

application.

When a multi data source is configured to perform connection failover, it serves

requests based on an ordered list of generic data sources, serving a connection from the

first data source before serving one from the second, and so forth. Multi data sources

8�Member data source removal involves suspension and shutdown of the generic data source.

WebLogic Server
Multi Data Source

Pool

Pool

Connection

Connection

Data Source 1

Data Source N

...

Multi Data Source

DB Node 1

DB Node 2

Figure 12-5.  Multi data source architecture

Chapter 12 JDBC

195

perform load balancing by serving connections from any data source in the list of

members, in round-robin fashion.

In order to perform either failover or load balancing, multi data sources require

configuring TestConnectionsOnReserve through which Oracle WebLogic Server tests

a connection before handing it to a requesting application. When a connection has

become stale or otherwise non-responsive, the connection will be closed and recreated.

If that also fails, the multi data source will perform failover or load balancing as

configured.

�Active GridLink
The previous paragraphs regarding support to clustered data stores in WebLogic Server

JDBC show that despite the nice improvement made in having multi data sources test

reserved connections before passing them to applications, the architectural approach

still has room for improvement. Specifically, would it not be better to somehow be

notified by the database management systems concerning failures in clustered nodes, so

that WebLogic Server could discard connections pointing to dead data store targets, and

re-create them ahead of the time when applications will request them?

Such a mechanism actually exists in Oracle RAC, and WebLogic Server supports it in

the form of a data source type named Active GridLink.

Active GridLink data sources are made specifically for use with Oracle RAC9. It

ensures that the pool always contains valid connections without the need for polling and

testing, covering what a WebLogic Server multi data source would do but with greater

accuracy and speed10. This also implies that WebLogic Server is decoupled from Oracle

Database in such a way that dynamic changes to database cluster topology are permitted

with no downtime.

9�Oracle actually discourages the use of generic data sources to connect to Oracle RAC.
10�Two Oracle proprietary technologies are at play for this to happen: Fast Connection Failover and

Oracle Notification Service.

Chapter 12 JDBC

196

�Recommended Exercises
	 1.	 Install and configure a third-party JDBC driver that is not included

out of the box with WebLogic Server.

	 2.	 Configure a generic data source and deploy it to a cluster.

	 3.	 Configure a multi data source, deploy it to part of a cluster, and

verify the total number of connections opened.

	 4.	 At runtime, add and remove data sources to a multi data source

that is deployed to a cluster.

	 5.	 Enable JDBC debug mode on a server using JVM arguments, verify

the results in the server log file.

�Certification Questions
	 1.	 JDBC drivers translate SQL sentences to native data store calls.

a.	 True

b.	 False

	 2.	 Type of a pure Java JDBC driver:

a.	 Type 2

b.	 Type 4

c.	 None of the above

d.	 All of the above

	 3.	 Language or notation in which data source configuration is stored

in WebLogic Server:

a.	 Java

b.	 JSON

c.	 XML

d.	 Any of the above

Chapter 12 JDBC

197

	 4.	 Load balancing in multi data sources is restricted to round-robin.

a.	 True

b.	 False

�Coming Up
The next chapter is about Java Transaction API or JTA; in it we will continue the brief

conversation started in this chapter regarding transactions beyond JDBC.

Chapter 12 JDBC

199
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_13

CHAPTER 13

Transactions
It is highly uncommon for companies to keep their enterprise data in just one database

or to maintain information in a single format. Most of the time business data is scattered

across several data stores, perhaps in heterogeneous repositories.

Likewise, businesses commonly have more than just a single application to process

their data in day-to-day operations. Accessing enterprise data from multiple applications

requires concurrent access. Concurrency brings the question of data integrity, preserving

it which is a fundamental objective of transactional systems. Guarding data integrity is

then a primary imperative in securing the value and usefulness of enterprise data.

Generally speaking, data integrity is preserved by ensuring that any operations that

change the state of information are either committed as a whole, or discarded altogether.

Also, in case of errors or other unexpected conditions, the state of incumbent data can be

restored to a valid, consistent state.

Oracle WebLogic Server implements the necessary logic and exposes the required

services to manage or participate in distributed transactions, entirely fulfilling its

responsibility to preserve data integrity, as explained above.

In this chapter, we discuss the distributed transaction model on which WebLogic

Server support for global transactions is based, followed by a review of the main aspects

that administrators need to consider when configuring, monitoring, and debugging

transactions in a WebLogic Server domain.

Note  Transactional support in Oracle WebLogic Server goes beyond the realm
of middleware infrastructure administration, spanning into enterprise applications
development, particularly when using EJB technology. In this chapter, in order to
provide just enough context for our analysis, we only briefly touch on EJB, or JMS,
as they are out of scope of the 1Z0-133 certification exam.

200

�Properties
The following are some key characteristics that a system that supports distributed

transaction processing is required to feature.

•	 Transactions have clear boundaries – Conceptually, the start and end

of a transaction are clearly demarcated, even though transactions

may occur in the context of a more comprehensive business process,

with distinct non-transactional business tasks occurring before or

after.

•	 Transactions are atomic, complete units of work – Whatever actions

considered part of a transaction must be performed as a whole, and

a transaction must always result in either committing or aborting all

operations involved.

•	 Transactions are consistent – It is expected that transactions

guarantee consistency, that whether or not transactions succeed, the

system remains in a valid state. Thus, transactions must take a system

from a previous valid state, to a new valid state.

•	 Transactions are isolated – Since transactions are expected to occur

in the presence of other concurrent operations, the state that is

internal to transactions must not be visible to processes outside of a

transaction.

•	 Transactions are durable – The effect of all operations in a committed

transaction must be permanently persisted, with special care to

ensure that the new state can be persisted even after system failure.

The latter four properties are well-known transactional features, also known as ACID

properties.

�Extended Architecture
In 1991, X/Open, which a few years later became The Open Group1, issued the

specification of a systems interface named XA, which is part of their Distributed

1�The Open Group is a global consortium dedicated to IT standards.

Chapter 13 Transactions

201

Transaction Processing architecture. The current version of the same specification was

released in 1994 as version 2 and is named XA+.

XA stands for eXtented Architecture, and is described as the interface between a

transaction manager, a resource manager, and a communication resource manager2.

Figure 13-1 shows the components and interfaces of the XA interface specification,

as they pertain to our analysis of transactions in Oracle WebLogic Server.

The figure above shows an application program that interacts with both a transaction

manager and a resource manager. The transaction manager also interacts with the

resource manager, and the resource manager interacts with target resources.

According to the XA specification, the application program has the responsibility

to define the actual transactional work, where it starts and where it ends, and what

operations need to be carried out on target data and other resources.

The role of the transaction manager is to organize work across multiple resource

managers in distributed transactions. It communicates transaction identifiers or XIDs to

resource managers, of their assigned work, and coordinates the decision to commit or

roll back changes, as well as recovery from failure.

2�The XA+ specification also includes a Communication Resource Manager component.

XA Interface
Components

TX

XA

XA

XA

Resource

Transaction
Manager

Application
Program

Resource
Manager

Figure 13-1.  Components of the XA interface

Chapter 13 Transactions

202

Resource managers are responsible for providing and controlling access to the target

resources, and to do so in a manner that is compliant with the transaction properties

discussed above. The work resource managers perform on target resources is in this

context referred to as a transaction branch.

�Two-Phase Commit
As per the XA specification, transaction managers and resource managers perform their

work by using Two-Phase Commit protocol or 2PC for short.

The first phase in 2PC is commonly termed the prepare phase, because the

transaction manager will ask resource managers of all transaction branches to prepare to

commit. Resource managers will perform the work requested on the specified resources,

and will report back whether or not they are able to commit the work requested.

The second phase is named the commit phase because in this, the transaction

manager will request all resource managers to either commit or roll back work in

transaction branches. The transaction manager will request all resource managers to

roll back if at least one of the resource managers voted to abort. Resource managers

will proceed as requested and report their final statuses. After this phase, the

transaction ends.

Throughout the transaction, both the transaction manager, as well as any resource

managers involved, log the state of their actions. These logs are an absolute requirement

for a system to recover in-flight transactions after failure. Figure 13-2 shows a simplified

sequence diagram of a distributed transaction committed using XA and 2PC.

Chapter 13 Transactions

203

The figure above shows a transaction manager and two resource managers in a

single distributed transaction. The arrows signify bidirectional XA calls between these

components.

In the first phase, the transaction manager asks both resource managers to

prepare to commit, and both reply affirmatively. With that consensus, the transaction

manager starts the second phase and requests both resource managers to commit their

operations, and they both confirm that they have completed their commitments.

This is a rather simplistic scenario, but illustrates well that heterogeneous target

resources may be part of the same transaction and that despite their types, both are

afforded the same transactional guarantees.

Figure 13-3 shows a contrasting sequence diagram. It displays a similar distributed

transaction rolled back.

XA TX and 2PC
Sequence Diagram Sample Commit

Transaction
Manager

Resource
Manager: DBMS

Resource
Manager: MS

Prepare

Prepare

Prepared

Prepared

Commit

Commit

Committed

Committed

Figure 13-2.  Sequence diagram of a committed transaction using XA and 2PC

Chapter 13 Transactions

204

The transaction pictured in the figure above shows the same actors as in the previous

figure. This time, the DBMS resource manager votes abort during the prepare phase.

Since there is no full commit consensus among resource managers, in the second phase

the transaction manager requests the JMS resource manager to roll back changes on the

target resource.

It is evident from the figure that the DBMS resource manager is not part of the

second phase. This is so because once a resource manager responds with a non-commit

confirmation, it will not wait for the second phase, for the transaction manager to

request a rollback. The resource manager itself will roll back its changes and end its

participation in the transaction.

�Java Transaction API
As indicated early in the book, Oracle WebLogic Server 12c release 1, the target version

of the 1Z0-133 WebLogic Server certification exam, is a Java EE 6 compliant application

server implementation. As such, it is required to support Java Transaction API version 1.1.

XA TX and 2PC
Sequence Diagram Sample Abort

Transaction
Manager

Resource
Manager: DBMS

Resource
Manager: MS

Prepare

Prepare

Prepared

Roll Back

Rolled Back

Abort

Figure 13-3.  Sequence diagram of an aborted transaction using XA and 2PC

Chapter 13 Transactions

205

The Java EE specification states that Java Transaction API or JTA covers two aspects.

First, an application-level interface that is to be used by both, application server3 and

applications, to demarcate transaction boundaries. Second is an interface between the

transaction manager and a resource manager.

The Java Transaction API specification itself defines that the container must also be

able to support distributed transactions, and must do so through a mapping of the XA

standard.

Thus, a container that implements JTA must define interfaces for applications to start

and end transactions, either directly or through enterprise beans. The container must

also implement system-level interfaces for components to interact with the transaction

manager, and for the transaction manager to interact with resource managers.

Oracle WebLogic Server 12c fully supports distributed transactions. It does so by

virtue of implementing the JTA specification, as part of being Java EE compliant.

An understanding of the principles outlined earlier in this chapter, regarding the

transactional model, architecture and execution protocols, prepares administrators to

further review JTA implementation details in Oracle WebLogic Server.

�WebLogic Server Transactions
It should be easy by now to map actors in an Oracle WebLogic Server environment to

components in XA architecture. An application program is an actual user application,

for example, an EJB client. The transaction manager is internal to WebLogic Server and

is accessible to application programs using the corresponding JTA interfaces. For EJB

and RMI technology, the transaction manager is presented as a transaction service.

An example of a resource manager, that is most contextual in our book, is a database

management system.

Note  The transaction service in WebLogic Server is not compliant with
distributed transaction standards such as OSI TP, IBM LU, or ODMG 93.

3�This is a direct reference to the EJB container rather than to Oracle WebLogic Server at large.

Chapter 13 Transactions

206

�Demarcation and Control
As explained before, JTA supports applications that are explicitly demarcated and started

by client code, or those in which the demarcation control resides in the container. This is

a fundamental concept of EJB application development. EJB developers refer to them as

bean-managed transactions, or container-managed transactions, respectively.

Container-managed transactions are simpler to use for enterprise application

developers but they lack finer-grained control afforded by bean-managed transactions.

In container-managed transactions, developers annotate bean methods as

transactional, and the EJB server manages transaction demarcation by method

invocations. This generally means a ratio of one method to one transaction4. It also

means that developers do not have direct access to controlling the transaction. For

instance, rolling back a container-managed transaction takes place automatically when

a system exception occurs.

Bean-managed transactions have full control of the transaction scope. EJB

application code explicitly makes calls to begin, commit, or roll back methods in the

UserTransaction interface object.

�Configuration
Certain aspects of transactional support in Oracle WebLogic Server are available

through either container-managed or bean-managed transactions. One such aspect

is transaction timeout, expressed in seconds. This value may be set by invoking the

setTransactionTimeout method of the UserTransaction interface object, or by using the

Administration Console.

Thus, it is possible for an administrator to influence the way the transaction manager

behaves by setting custom values to JTA configuration, either at the domain or cluster

levels5.

JTA configuration pages for both domain and cluster allow setting values to exactly

the same properties. Both are available at the main configuration page of the respective

scope, under a tab labeled JTA.

4�The transaction service in WebLogic Server does not support nested transactions.
5�Setting a JTA configuration value at cluster level takes precedence over the same values defined
at domain level.

Chapter 13 Transactions

207

Figure 13-4 shows the upper part of the JTA configuration page at cluster level in the

Administration Console.

The JTA configuration page has a good number of settable properties. The following

is a list of those considered very relevant for almost every use case.

•	 Timeout seconds – Maximum time a distributed transaction is

allowed to remain in prepare or first phase

•	 Abandon timeout seconds – Maximum time a distributed transaction

is allowed to remain in commit or second phase

Figure 13-4.  JTA configuration page

Chapter 13 Transactions

208

•	 Max transactions – Maximum number of concurrent transactions to

exist on a server instance

•	 Execute XA calls in parallel – Whether or not to parallelize XA calls

when there are threads available

•	 Enable two-phase commit – Use 2PC protocol to coordinate

distributed transactions

•	 Maximum duration of XA calls – Maximum allowed time (in

milliseconds) for a call to a resource before declaring it unavailable

�Transaction Logs
As explained before, transaction managers and resource managers participate in

distributed transaction record statuses at various points in time during the life of a

transaction. Transaction logs also include information about committed transactions

coordinated by the server that may have not been completed due to server failure.

When a failed server is restarted, the transaction manager will automatically use the

transaction logs to perform actions required to restore consistency.

Transaction logs are created by Oracle WebLogic Server in binary format, and can

be stored in either default store6 or use a JDBC store. It is a recommended practice to

configure transaction logs to be located on highly available storage. Figure 13-5 shows

the how to configure default store type and directory on a server instance.

6�The location of default store is data/store/default, in the corresponding managed server
directory.

Chapter 13 Transactions

209

The figure above shows the Services tab of the main configuration page of a server

instance. Here, the transaction log store is configured by specifying either the path to a

highly available directory when in Default Store type7, or specifying a data source to use

when selecting JDBC type.

7�Performance of the default store is affected by the OS write-to-disk policies. Configuring these
policies is out of the scope of exam 1Z0-133.

Figure 13-5.  Default store configuration page of a server instance

Chapter 13 Transactions

210

�Monitoring
The Administration Console may be used to monitor transaction statistics on a per-

server basis. The JTA tab in the Monitoring page of a server instance provides access to

several information categories, displayed as tabs as well:

•	 Summary

•	 Transactions

•	 XA resources

•	 Non-XA resources

•	 Transaction Log Store Connections

•	 Transaction Log Store Statistics

In all cases, statistics presented are related to current transactions that the server

coordinates, or about transactions in which resources deployed on the server participate.

Figure 13-6 shows the XA resources statistics table of the JTA monitoring page in the

Administration Console.

Figure 13-6.  XA Resources Statistics in JTA monitoring page

Chapter 13 Transactions

211

The figure above displays a sample JTA monitoring tab. This particular view shows

that it is possible to view details about the number of transactions, and the specific state

they are in, for each transaction aware resource deployed on a server instance. The

image shows statistics for an XA data source.

�Recommended Exercises
	 1.	 Describe a case in which XA is not an appropriate distributed

transaction architecture.

	 2.	 Establish a transaction with a database, kill the server JVM process

while the transaction is in-flight, restart the server, and verify that

the state is made consistent.

�Certification Questions
	 1.	 WebLogic Server supports XA+ protocol version 2.

a.	 True

b.	 False

	 2.	 Resource managers may take part in prepare phase and be absent

in commit phase of a distributed transaction.

a.	 True

b.	 False

	 3.	 XA interfaces implemented in JTA are high-level interfaces,

available to applications:

a.	 All of them are

b.	 None of them are

c.	 Some of them are

Chapter 13 Transactions

212

	 4.	 Property that limits the maximum time allowed for a transaction

to remain in commit phase:

a.	 Timeout seconds

b.	 Abandon timeout seconds

c.	 Maximum duration of XA calls

�Coming Up
The next chapter is about application deployment and how to remotely start, stop, or

restart applications deployed on a cluster.

Chapter 13 Transactions

213
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_14

CHAPTER 14

Application Deployment
Application deployment is yet another subject where the duties of Oracle WebLogic

Server administrators and enterprise application developers often come close together.

Traditionally, where developers ended their work, system administrators used to take

over, deploy applications, and manage them in production. In our days, new roles,

processes, and culture aim to bring software development and system administration

together, in an effort to enable application code to reach production at a faster pace,

without sacrificing security and stability.

In this chapter, we review the tools, as well as the process to make application code

available to the Oracle WebLogic Server runtime in production environments.

Note  Our review focuses on tools and practices for application deployment from
the perspective of middleware administrators.

Deployment activities are not just about releasing brand new applications.

Sometimes the code being deployed fixes or updates existing functionality. Sometimes

deployment sessions are meant to remove deployed applications altogether.

According to this, our analysis aims to cover production applications deployment and

undeployment, as well as certain related actions such as starting and stopping applications,

performing basic tests of application availability, and application redeployment.

Oracle WebLogic Server enables administrators to perform deployment activities

using the Administration Console, WLST, the weblogic.Deployer tool, an Ant task named

deploy, and a Maven plug-in. The deploy Ant task and the Maven plug-n are meant for

environments where those are the build tools of choice. The weblogic.Deployer tool is

very robust and is suitable for use in scripting all kinds of deployment automations.

Our analysis covers the most common application deployment scenarios primarily

using weblogic.Deployer.

214

�Deployment Scenarios
Even though methods and dynamics vary from company to company, the fundamental

activities performed to deploy applications are roughly the same, despite company size

or even organization maturity.

In small startups, for example, these activities may be performed in quick, single

actions, whereas in larger organizations, they may be aggregated to other processes,

supported by specialized software1, or be performed by multiple individuals.

Most application deployment activities that Oracle WebLogic Server administrators

are required to perform are comprised in the following three scenarios:

•	 Deploy new applications

•	 Deploy fixes or updates to applications

•	 Undeploy applications

When deploying code, which occurs in the first two scenarios, a code and

configuration preparatory phase is required, after which the actual deployment,

redeployment, or undeployment occurs, followed by a validation phase that aims to

determine whether or not the changes made work as expected and should remain, or if

they should be rolled back.

�Preparatory Phase
Several considerations must be made regarding code that is considered production

ready, including:

•	 Where code should be stored to facilitate deployment activities

•	 How code should be stored, in terms of application packaging

•	 How to prepare the application configuration so that it matches the

configuration of target environments

1�For instance, financial and health care organizations are required to perform security and
compliance checks in their build processes.

Chapter 14 Application Deployment

215

�Storage Location
Applications developed targeting Oracle WebLogic Server are far better organized using

version control software. When in place, users and systems can easily get production

code from a dedicated branch in a dedicated repository.

Note I mportant as it is, the recommendation to store production code using
version control software is ultimately a convenience recommendation only.

Application code should be placed in a dedicated location in a file system that is

outside a WebLogic Server domain. Oracle recommends creating a three-level directory

structure for each application. The name of the first-level directory should resemble

the application name. The second-level directory is named as per the application

versions it will contain. The third-level directory should be named app, to reflect that it

stores the actual application code. For example, version 1.0 of a web application named

HelloWorld could be stored in /apress/apps/HelloWorld/1.0/app/HelloWorld.war.

�Storage Format
Enterprise application developers organize their application code also using a specific

directory structure, according to the type of application they work on. Frequently, they

organize their code assisted by an integrated development environment or IDE2, which lets

them build and test their applications in an iterative process. As part of their build process,

IDEs create archives of the application directory structure3, resulting in deployable files

sometimes referred to as deployment units. Both the directory structure and the types of

deployment units that can be created are defined in the Java EE specification.

Oracle WebLogic Server can deploy code that is packaged as a deployment unit, or

as the directory structure that results from exploding or extracting a deployment unit.

Perhaps the only sensible difference between both modes is that deploying code using

exploded archives allows for partial updates after deployment, especially static files.

Oracle recommends deploying applications using deployment units.

2�Common IDEs that support working on applications that target Oracle Fusion Middleware are
Oracle JDeveloper, Oracle NetBeans, and Eclipse, configured with the Oracle Enterprise Pack for
Eclipse (OEPE) plug-in.

3�IDEs use the jar tool available in the underlying JDK in order to create deployment units.

Chapter 14 Application Deployment

216

Deployment units differ among each other in their internal directory structure and

also in their file extensions. The most common types of deployment units that can be

deployed on Oracle WebLogic Server are as follows:

•	 EJB applications (.jar)

•	 Web applications and web services (.war)

•	 Resource adapters (.rar)4

•	 Enterprise applications (.ear)

Each of the application types listed above can include a Java EE deployment

descriptor5, as well as a WebLogic Server proprietary deployment descriptor. In general,

where there is a Java EE deployment descriptor named file.xml, there is a corresponding

WebLogic Server-only descriptor named file-weblogic.xml. All application deployment

units are really just jar files with a different extension.

�Configuration Plans
As explained before, application developers build and deploy their applications to a

target development environment, most of the time, to a local middleware environment.

Their applications are configured to work well in their development environment but

because of external dependencies, they would most likely break when deployed on a

subsequent environment, such as test, integration, and so forth.

Since these dependencies are meant to be externalized from code, the logical

approach as developers move their code to the next environment would be to edit

the corresponding deployment descriptor to match the configuration of the new

environment. Oracle recommends against this practice, and advises to use WebLogic

Server configuration plans instead.

4�Resource adapters implement the Connector Architecture and enable Java EE applications to
Access enterprise information systems such as ERPs.

5�Deployment descriptors are XML documents that describe the configuration and runtime
behavior of a Java EE application.

Chapter 14 Application Deployment

217

A deployment plan is an XML document that contains variables for the deployment

properties and resource dependencies already defined in the corresponding deployment

descriptors.

Configuration plans may be created from within an application project in Oracle

JDeveloper, or by changing a configurable attribute value of an already deployed

application using the Administration Console, or also by using the weblogic.

PlanGenerator tool.

For example, a developer may have been working on a HelloWorld web application.

Once she has completed her development, she distributes the application as a

deployment unit named HelloWorld.war.

When deployed to an Oracle WebLogic Server environment, the application is

reachable using the application context /HelloWorld. This context name is derived from

the deployment unit file name, minus the file extension6.

If a system administrator needed to deploy this application in a different

environment, and have it accessible through a different context name, say the server

root context7 for instance, she could perform the change by using a configuration plan to

override the original context name.

This is possible without having to extract and modify the original deployment

descriptor included in the HelloWorld.war file.

Listing 14-1 shows how the weblogic.PlanGenerator tool can be used to export a

configuration plan of the HelloWorld.war file.

Listing 14-1.  Creating a configuration plan using weblogic.PlanGenerator

[gustavo@apress product]$ source wlserver/server/bin/setWLSEnv.sh

...

Your environment has been set.

[gustavo@apress product]$ cd /apress/apps/HelloWorld/1.0/

[gustavo@apress 1.0]$ java weblogic.PlanGenerator -all app/HelloWorld.war

Generating plan for application app/HelloWorld.war

Export option is: all

6�In compliance with Java EE, a default context name is assigned to the application when one is
not explicitly configured.

7�An application is said to be configured at the root context when it is reachable using just a server
name or address, such as apress.com or 127.0.0.1:8080.

Chapter 14 Application Deployment

218

Exporting properties...

Saving plan to /apress/apps/HelloWorld/1.0/plan/plan.xml...

<1-Oct-2017 2:08:34 o'clock PM CDT> <Info> <J2EE Deployment SPI> <BEA-

260072> <Saved configuration for application, HelloWorld.war>

The example highlighted above generates a plan containing variables for all

configurable properties of the target web application. The command saves the plan in a

file named plan.xml.

The resulting configuration plan is quite verbose. The developer may have decided

to use the all option of weblogic.PlanGenerator to ensure that the configuration property

she is interested in changing would be included in the plan.

Listing 14-2 shows an extract of the configuration plan created, highlighting the

elements relevant to our example.

Listing 14-2.  Extract of a configuration plan

<?xml version='1.0' encoding='UTF-8'?>

<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"

...>

 <application-name>HelloWorld.war</application-name>

 <variable-definition>

 ...

 <variable>

 <name>WeblogicWebApp_ContextRoots_15068849147018</name>

 <value xsi:nil="true"></value>

 </variable>

 ...

 </variable-definition>

 <module-override>

 <module-name>HelloWorld.war</module-name>

 <module-type>war</module-type>

 <module-descriptor external="false">

 <root-element>weblogic-web-app</root-element>

 <uri>WEB-INF/weblogic.xml</uri>

 ...

 <variable-assignment>

 <name>WeblogicWebApp_ContextRoots_15068849147018</name>

Chapter 14 Application Deployment

219

 <xpath>/weblogic-web-app/context-root</xpath>

 <origin>planbased</origin>

 </variable-assignment>

 ...

 </module-descriptor>

 ...

 </module-override>

 <config-root>/apress/apps/HelloWorld/1.0/plan</config-root>

</deployment-plan> </deployment-plan>

The important elements in this example are a variable element and a variable-

assignment element, both having the exact name sub element.

The variable element is a child of a variable-definition element. The variable-

assignment element is a child of a module-descriptor element, which has a child uri

element with a reference to the weblogic.xml deployment descriptor. That file contains

the context definition that we attempt to override. The specific element to be overridden

is defined in an XPath expression contained in an xpath sub element.

In order to perform the required configuration change, the administrator needs

to set the value sub element of the variable element to the desired application context

name. It is also necessary to remove the origin sub element of the variable-assignment

element and replace it with an operation sub element with a value of replace, to explicitly

request WebLogic Server to perform the substitution when the application is deployed

alongside the configuration plan.

It would also be useful, for the sake of clarity, to also remove the rest of elements

that are not relevant to our case, particularly the extra variable and module-override

elements.

Listing 14-3 shows the updated configuration plan. It took just two lines to modify

the generated plan to match our requirements.

Listing 14-3.  Updated configuration plan

<?xml version='1.0' encoding='UTF-8'?>

<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-

plan" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan

http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd"

global-variables="false">

Chapter 14 Application Deployment

220

 <application-name>HelloWorld.war</application-name>

 <variable-definition>

 <variable>

 <name>WeblogicWebApp_ContextRoots_15068849147018</name>

 <value>/</value>

 </variable>

 </variable-definition>

 <module-override>

 <module-name>HelloWorld.war</module-name>

 <module-type>war</module-type>

 <module-descriptor external="false">

 <root-element>weblogic-web-app</root-element>

 <uri>WEB-INF/weblogic.xml</uri>

 <variable-assignment>

 <name>WeblogicWebApp_ContextRoots_15068849147018</name>

 <xpath>/weblogic-web-app/context-root</xpath>

 <operation>replace</operation>

 </variable-assignment>

 </module-descriptor>

 </module-override>

 <config-root>/apress/apps/HelloWorld/1.0/plan</config-root>

</deployment-plan>

When deploying this configuration plan alongside the same HelloWorld.war

deployment unit as before, WebLogic Server will ensure that the correct configuration

values and resources are used at runtime.

Even though creating and using a deployment plan may appear more work

compared to simply using the Administration Console for this small, one-property

configuration change, it is not. It would be a bit longer to explode the deployment unit,

perform the change, and re-archive the web application file, in addition to performing

the module substitution using the Administration Console.

Configuration plans are a really powerful and productive approach to performing

multiple configuration changes swiftly and accurately, especially in the context of

production deployments. Also, this approach fosters automation, which should be the

preferred way of performing middleware administration tasks whenever and wherever

possible.

Chapter 14 Application Deployment

221

�Deployment
Following up with our HelloWorld application example discussed in the previous

section, deploying an application using also a deployment plan can be achieved using

the weblogic.Deployer tool, in a single line. Listing 14-4 shows how to deploy our

HelloWorld.war archive alongside the deployment plan that was generated and modified

to substitute the default application context.

Listing 14-4.  Deploying our HelloWorld application using a configuration plan

[gustavo@apress servers]$ java weblogic.Deployer -adminurl 127.0.0.1:7001

-username weblogic -password ### -plan /apress/apps/HelloWorld/1.0/plan/

plan.xml -deploy /apress/apps/HelloWorld/1.0/app/HelloWorld.war -targets

cluster

weblogic.Deployer invoked with options: -adminurl 127.0.0.1:7001 -username

weblogic -plan /apress/apps/HelloWorld/1.0/plan/plan.xml -deploy /apress/

apps/HelloWorld/1.0/app/HelloWorld.war -targets cluster

<1-Oct-2017 6:53:56 o'clock PM CDT> <Info> <J2EE Deployment SPI> <BEA-

260121> <Initiating deploy operation for application, HelloWorld.war

[archive: /apress/apps/HelloWorld/1.0/app/HelloWorld.war], to cluster .>

Task 36 initiated: [Deployer:149026]deploy application HelloWorld.war

[Version=v1.0] on cluster.

Task 36 completed: [Deployer:149026]deploy application HelloWorld.war

[Version=v1.0] on cluster.

Target state: deploy completed on Cluster cluster>

The operation was run on the same host where the Administration Server is running.

It deployed our HelloWorld application to a sample, two-node cluster. The expected

result was to be able to access our application using the root context of managed servers

in our cluster. Figure 14-1 shows a browser window accessing the application.

Chapter 14 Application Deployment

222

As expected, the configuration plan was used to modify the default behavior, and

deploy our application in the target root context instead.

�Staging Mode
Since deploying an application means to essentially provide new code to the WebLogic

Server runtime, it is necessary to consider where that code will be available, before and

after deployment.

WebLogic Server supports three staging modes:

•	 stage

•	 nostage

•	 external_stage

In stage mode, WebLogic Server will copy application files to a dedicated stage

directory in every target before performing the actual deployment. The source of the

application deployment becomes the stage directory in each target.

In nostage mode, the source of the application deployment is the path provided at

deployment time. Each target must be able to access the same path in order to complete

application deployment.

In our example above, if we had used nostage mode, both cluster nodes would have

been required to access the directory specified as holding the HelloWorld.war file. This is

commonly resolved by using a highly available file system location that is configured or

mounted in the same path of each cluster node.

In external_stage mode, the source of application deployment is the same as when

working in stage mode, meaning a dedicated stage directory in each target, but the

responsibility to copy the files is left to an external entity.

Figure 14-1.  HelloWorld application deployed at root context

Chapter 14 Application Deployment

223

This is an appropriate mode for scenarios where application archives are large

enough that if the deployment operation were attempted in stage mode, could possibly

time out while staging files for deployment. In this case, it is easier for administrators to

ensure that application files are uploaded to target stage directories ahead of attempting

the deployment operation.

All stage modes are available as command-line options when using weblogic.

Deployer to deploy applications.

�Distributing Applications
The deployment operation performed in Listing 14-4 deployed our HelloWorld

application and started it in all targets. In other words, as soon as the deployment

operation completed, the application was accessible without restrictions. This is not

necessarily desired in every case, especially in production environments. Sometimes,

final sanity checks are required before opening up access to all clients. In WebLogic

Server environments, distributing an application is a deployment operation in which

code is effectively distributed to all targets and validated for deployment, but one which

does not conclude with automatically starting applications.

Distributing applications is particularly well suited for application deployment in

production environments.

To distribute an application using weblogic.Deployer, an administrator would simply

need to use the distribute instead of deploy option, as shown in Listing 14-5.

Listing 14-5.  Distributing our HelloWorld application and a configuration plan

[gustavo@apress servers]$ java weblogic.Deployer -adminurl 127.0.0.1:7001

-username weblogic -password ### -plan /apress/apps/HelloWorld/1.0/plan/

plan.xml -distribute /apress/apps/HelloWorld/1.0/app/HelloWorld.war

-targets cluster

weblogic.Deployer invoked with options: -adminurl 127.0.0.1:7001 -username

weblogic -plan /apress/apps/HelloWorld/1.0/plan/plan.xml -distribute /

apress/apps/HelloWorld/1.0/app/HelloWorld.war -targets cluster

<1-Oct-2017 8:45:47 o'clock PM CDT> <Info> <J2EE Deployment SPI> <BEA-

260121> <Initiating distribute operation for application, HelloWorld.war

[archive: /apress/apps/HelloWorld/1.0/app/HelloWorld.war], to cluster .>

Chapter 14 Application Deployment

224

Task 42 initiated: [Deployer:149026]distribute application HelloWorld.war

[Version=v1.0] on cluster.

Task 42 completed: [Deployer:149026]distribute application HelloWorld.war

[Version=v1.0] on cluster.

Target state: distribute completed on Cluster cluster

After performing the operation above, both the HelloWorld.war archive and the

configuration plan were successfully copied to the stage directories of both cluster

nodes, and the application was shown in status prepared.

�Starting and Stopping Applications
Once an application has been distributed but before it is started and made available for

widespread use in a production environment, administrators have an opportunity to

perform final sanity checks.

In our context, this might mean verifying that all dependencies are satisfied, and that

the application responds well to connection requests.

This can be accomplished by starting an application in administration mode, passing

the start and adminmode options together to weblogic.Deployer. Listing 14-6 shows how

an application can be started in admin mode.

Listing 14-6.  Starting our HelloWorld application in admin mode

[gustavo@apress sample]$ java weblogic.Deployer -adminurl 127.0.0.1:7001

-username weblogic -password ### -targets cluster -start -adminmode -name

HelloWorld.war -appversion v1.0 /apress/apps/HelloWorld/1.0/app/HelloWorld.

war

weblogic.Deployer invoked with options: -adminurl 127.0.0.1:7001

-username weblogic -targets cluster -start -adminmode -name HelloWorld.war

-appversion v1.0 /apress/apps/HelloWorld/1.0/app/HelloWorld.war

<1-Oct-2017 11:23:44 o'clock PM CDT> <Info> <J2EE Deployment SPI> <BEA-

260121> <Initiating start operation for application, HelloWorld.war

[archive: null], to cluster .>

Task 85 initiated: [Deployer:149026]start application HelloWorld.war

[Version=v1.0] on cluster.

Chapter 14 Application Deployment

225

Task 85 completed: [Deployer:149026]start application HelloWorld.war

[Version=v1.0] on cluster.

Target state: start completed on Cluster cluster

When in admin mode, applications are only accessible through an administration

channel. Once the final checks have been done, the application can be transitioned from

admin mode to full active or production mode, thereby removing access restrictions.

Stopping an application results in discontinuing access and an abrupt termination of

existing sessions. In cases where existing sessions must be permitted to end, but no new

sessions should be accepted, applications can be gracefully stopped. This can be done

passing the stop and graceful options together to weblogic.Deployer. Listing 14-7 shows

how an application can be gracefully stopped.

Listing 14-7.  Gracefully stopping our HelloWorld application

[gustavo@apress sample]$ java weblogic.Deployer -adminurl 127.0.0.1:7001

-username weblogic -password ### -targets cluster -stop -graceful -name

HelloWorld.war -appversion v1.0

weblogic.Deployer invoked with options: -adminurl 127.0.0.1:7001 -username

weblogic -targets cluster -stop -graceful -name HelloWorld.war -appversion

v1.0

<1-Oct-2017 11:37:27 o'clock PM CDT> <Info> <J2EE Deployment SPI> <BEA-

260121> <Initiating stop operation for application, HelloWorld.war

[archive: null], to cluster .>

Task 86 initiated: [Deployer:149026]stop application HelloWorld.war

[Version=v1.0] on cluster.

Task 86 completed: [Deployer:149026]stop application HelloWorld.war

[Version=v1.0] on cluster.

Target state: stop completed on Cluster cluster

�Redeployment
One of the most important actions that administrators working on production

environments will perform is updating applications with zero downtime. This is

applicable to both, fixing issues and releasing incremental features to currently deployed

applications.

Chapter 14 Application Deployment

226

This requirement may be approached from several angles. Oracle WebLogic Server

attempts to resolve this by featuring an application redeployment approach that allows

two versions of an application to work side by side.

In this scheme, the retiring application version8 is permitted to complete all in-

flight sessions, while new incoming application requests are sent to the new application

version. This is referred to as production redeployment.

In case of failures or errors discovered while the retiring application is still deployed,

it is possible to roll back the process by simply undeploying the new application version,

which will also cause the retiring application to become the active version again.

The only downside to production redeployment is that it only works for applications

deployed as war and ear archives, which have HTTP clients, including web services

applications, or applications that expect inbound JMS and JCA calls.

The alternative approach to production redeployment is called in-place

redeployment. It causes an application to abruptly become unavailable because

WebLogic Server will discard the existing class loader and replace it with a new one,

based on the new code in the application. This obviously implies that there is no

recovery for in-flight sessions.

Listing 14-8 shows how an application can be production redeployed using

weblogic.Deployer.

Listing 14-8.  Performing production redeployment of our HelloWorld

application

[gustavo@apress sample]$ java weblogic.Deployer -adminurl 127.0.0.1:7001

-username weblogic -password ### -targets cluster -plan /apress/apps/

HelloWorld/2.0/plan/plan.xml -source /apress/apps/HelloWorld/2.0/app/

HelloWorld.war -name HelloWorld.war -redeploy

weblogic.Deployer invoked with options: -adminurl 127.0.0.1:7001 -username

weblogic -targets cluster -plan /apress/apps/HelloWorld/2.0/plan/plan.xml

-source /apress/apps/HelloWorld/2.0/app/HelloWorld.war -name HelloWorld.war

-redeploy

<2-Oct-2017 12:14:54 o'clock AM CDT> <Info> <J2EE Deployment SPI> <BEA-

260121> <Initiating redeploy operation for application, HelloWorld.war

[archive: /apress/apps/HelloWorld/2.0/app/HelloWorld.war], to cluster .>

8�It is recommended to specify application versioning using a standard MANIFEST.MF file.

Chapter 14 Application Deployment

227

Task 89 initiated: [Deployer:149026]deploy application HelloWorld.war

[Version=v2.0] on cluster.

Task 89 completed: [Deployer:149026]deploy application HelloWorld.war

[Version=v2.0] on cluster.

Target state: redeploy completed on Cluster cluster

The example above shows that our HelloWorld application, version 2.0 was

successfully redeployed using weblogic.Deployer. Figure 14-2 shows how the

deployments page in the Administration Console displays both versions of the

application after the production redeployment, one in active status and the other in the

retired status.

Figure 14-2.  HelloWorld application versions after a production redeployment

�Undeployment
As expected, application undeployment removes an application permanently from the

Oracle WebLogic Server runtime. Listing 14-9 shows how version 1.0 of our HelloWorld

application may be undeployed using weblogic.Deployer.

Chapter 14 Application Deployment

228

Listing 14-9.  Undeployment of version 1.0 of our HelloWorld application

[gustavo@apress sample]$ java weblogic.Deployer -adminurl 127.0.0.1:7001

-username weblogic -password ### -targets cluster -name HelloWorld.war

-appversion v1.0 -undeploy

weblogic.Deployer invoked with options: -adminurl 127.0.0.1:7001 -username

weblogic -targets cluster -name HelloWorld.war -appversion v1.0 -undeploy

<2-Oct-2017 12:29:21 o'clock AM CDT> <Info> <J2EE Deployment SPI> <BEA-

260121> <Initiating undeploy operation for application, HelloWorld.war

[archive: null], to cluster .>

Task 93 initiated: [Deployer:149026]remove application HelloWorld.war

[Version=v1.0] on cluster.

Task 93 completed: [Deployer:149026]remove application HelloWorld.war

[Version=v1.0] on cluster.

Target state: undeploy completed on Cluster cluster

Once an application has been undeployed, the only way to restore its functionality is

by going through the deployment process again.

This concludes our review of the application deployment on Oracle WebLogic Server

from the perspective of middleware administrators.

It should be apparent now that weblogic.Deployer is a powerful tool that thoroughly

covers the application deployment landscape in Oracle WebLogic Server.

�Recommended Exercises
	 1.	 Deploy an application using an exploded archive as target.

	 2.	 Modify servlet name and mappings of a deployed web application

using a configuration plan.

	 3.	 Modify the targets of a web module in an enterprise application

using a configuration plan.

Chapter 14 Application Deployment

229

�Certification Questions
	 1.	 WebLogic Server application deployment supports scripted

automations using a variety of tools.

a.	 True

b.	 False

	 2.	 WebLogic Server supports zero downtime redeployment of all

types of applications.

a.	 True

b.	 False

	 3.	 Redeployment mode that replaces class loaders immediately:

a.	 Production redeployment

b.	 In-place redeployment

c.	 Both of them

	 4.	 It is possible to undeploy an application while allowing existing

sessions to complete gracefully.

a.	 True

b.	 False

�Coming Up
The next chapter is about security providers in WebLogic Server. We will review built-in

security roles and LDAP integration.

Chapter 14 Application Deployment

231
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_15

CHAPTER 15

Security
Security in Oracle WebLogic Server is a very extensive subject, both within and around

middleware and enterprise applications.

As required by the objectives in certification exam 1Z0-133, in this chapter we review

the fundamental concepts related to security in enterprise systems. We also cover the

structural components of security in a WebLogic Server domain, as well as how to extend

the configuration for one of the most commonly required security scenarios, namely,

integrating with an LDAP directory for authentication.

Oracle WebLogic Server implements a security architecture that is compliant with

multiple security specifications and standards. Its implementation is robust and satisfies

the security requirements of most enterprise middleware environments.

Since it supports open standards and has a modular architecture that promotes

configuration composability, it integrates well with many enterprise grade, security, and

identity management solutions.

�Concepts
Enterprise security systems are built around the notions of an entity that is subject to

authentication and authorization in order to gain access to protected resources. The

scope of authentication and authorization processes in security systems varies greatly,

from the simple to the robust and complex, from those based on a limited set of rules, to

those that comply with multiple security protocols. Our review of the WebLogic Server

security implementation covers the following concepts:

•	 Subject

•	 Authentication

•	 Authorization

232

•	 Principal

•	 Policy

In our current context, a subject is an entity, human, or system that establishes

interest in accessing resources protected by a security system. After being prompted

by the subject, the security system starts an authentication process. Commonly, the

authentication process occurs in a conversational style where both parties exchange

messages.

As part of this dialog, the subject will present the system credentials as proof of its

identity. The system is expected to be able to assert the validity of credentials. When they

are valid, the system trusts that the subject represents the identity it presumes.

As a result of positive authentication, a set of principals are assigned. This effectively

translates the authenticated subject to its corresponding identity in the context of the

target resource, and the authentication process ends1.

The authorization process uses policies to determine whether or not access should

be granted to requesting principals.

Policies have different levels of granularity, both in terms of the principals to

which they apply, and also in terms of the level of access control they exercise over the

resources.

Every time access to a resource is requested, the security system will determine what

set of policies are applicable, and will go through each of the rules in them, to make a

final decision of whether to grant or deny the request.

�Security Realms
Oracle WebLogic Server organizes the main components of the security service in a

realm. Every WebLogic Server domain contains a security realm named myrealm, which

comes preconfigured with the minimum set of components to support a functional

security service.

Administrators are free to create their own, custom-configured security realms2, but

they must ensure that all default security artifacts associated with domain resources are

correctly configured.

1�Some systems consider that assigning a principal to an authenticated identity is the beginning of
the authorization process, instead of the end of the authentication process.

2�At any time one and only one security realm can be active.

Chapter 15 Security

233

Figure 15-1 shows an architecture diagram of the basic components of a security

realm.

The diagram shows that a security realm consists of fundamentally two parts: a set of

security providers and a security store. The security store can be either DBMS-based or

LDAP-based, and is used to persist the working data of security providers.

The diagram also conveys that WebLogic Server resources interact with security

providers and consume their services, and that enterprise applications and other

domain resources may define security policies that are also considered in the context

and operation of a realm.

�Security Store
The security data store maintains global security data, which includes default groups,

roles, and policies, and it can also store custom security data, meaning the additional

groups, roles, and policies that an administrator creates to configure the environment to

the unique needs of her organization.

WebLogic Server
Security Realm Architecture

Scoped
Data

Domain
Resources

Provider

Provider

Provider

. . .

Security
Store

Global
Data

Custom
Data

Security Realm

WebLogic Server Domain

Figure 15-1.  Architecture of a security realm

Chapter 15 Security

234

The security store of myrealm is an LDAP server, which comes embedded out of the

box in Oracle WebLogic Server3.

The security store is physically hosted in the Administration Server, and is

automatically replicated to each managed server at regular configurable intervals.

For the sake of efficiency, WebLogic Server performs write operations on the master

copy of the embedded LDAP server, whereas read operations may be performed by

managed servers on their locally replicated copies.

�Security Providers
The default realm in a WebLogic Server domain comes with a set of configured security

providers including the following:

•	 Authentication

•	 XACML Authorization

•	 Identity Assertion

•	 Credential Mapping

•	 XACML Role Mapping

•	 Adjudication

•	 CertPath

The first two providers may be easily recognized from our review of the fundamental

concepts. The remaining providers are either called indirectly, or may be included as

dependencies of other providers.

A WebLogic Server realm supports other security providers not included in the

default realm configuration, such as auditing providers and providers that enable

configuration of certificate revocation lists when accepting x509 certificates as

credentials for authentication.

WebLogic Server security providers that integrate with other systems may be also

purchased from third parties, or for very particular needs, they can be implemented

from scratch.

3�The embedded LDAP server in WebLogic Server supports workloads of up to around 10
thousand objects, with production-like performance.

Chapter 15 Security

235

In the following paragraphs, we review the purpose of the base set of security

providers configured in myrealm.

�Authentication Provider
Processes verification of the identity of a subject, given a set of credentials provided. The

default implementation supports authentication using username and password, as well

as certificate authentication directly with WebLogic Server instances or with a supported

reverse proxy.

An authentication provider contains exactly one LoginModule. In an environment

where multiple kinds of authentication are required, multiple login modules will be

required.

System administrators can organize multiple authentication providers to be called in

a specified order.

A WebLogic Server domain always requires the configuration of at least one

authentication provider.

�XACML Authorization Provider
Controls access to protected resources, making access decisions based on a set of

XACML-compliant policies4. In order for authorization providers to use a policy when

controlling access to a resource, it must have been associated with a resource type5,

or with a specific instance of a resource. Likewise, WebLogic Server resources are not

covered by an authorization provider until after a security policy is assigned to them.

A WebLogic Server domain always requires the configuration of at least one

authorization provider.

Note A dministrators implicitly create a security policy by associating a WebLogic
Server resource with a user, group, or role.

4�XACML stands for eXtensible Access Control Markup Language. It defines a declarative access
control policy language that promotes loose coupling between access policies and resources.

5�Policies defined to protect all instances of a resource type are called root-level policies, whereas
policies applied directly to resources are called scoped policies.

Chapter 15 Security

236

�Security Policies

Policies contain one or more conditions that are evaluated by an authorization provider,

in order to determine whether to grant or deny access.

Single-condition policies are not uncommon. However, when multiple conditions

are defined in a policy, they can be combined using AND & OR operators, and they may

also be negated.

The default security providers in WebLogic Server support composing policies using

three types of conditions.

The first kind is a basic condition that includes just the name of a role or a principal.

The second kind of condition defines a time constraint, based on definitions of after,

before or between, in terms of both time and date.

The third kind of condition is application context based. These conditions use

information that must be available in requests to applications. Servlet requests, servlet

session attributes, as well as EJB method parameters are supported.

�Identity Assertion Provider
An identity assertion provider is a specialized form of authentication provider. It

validates the identity of a subject using a token. Success in validating a token also

involves mapping the token to a username, which may also be assigned principals.

Identity assertion providers support for single sign-on using for example SAML tokens

and Kerberos.

A WebLogic Server domain does not require the configuration of an identity

assertion provider, although configuring more than one is supported.

�Credential Mapping Provider
A credential mapping provider performs the association or map of local WebLogic Server

credentials, with credentials in a remote system. This association intends that a subject

that has been authenticated locally may also be authenticated with a legacy or remote

system.

A WebLogic Server domain always requires the configuration of at least one

credential mapping provider.

Chapter 15 Security

237

�XACML Role Mapping Provider
A XACML role mapping provider supplies an XACML authorization provider with

role information that is granted to subjects whose identity has been verified. This

information is obtained dynamically from application deployment descriptors or

calculated using existing policies and parameters of the current request.

A WebLogic Server domain always requires the configuration of at least one role

mapping provider.

�Adjudication Provider
An adjudication provider settles a contended access decision, caused by multiple

authorization providers disagreeing on whether or not access should be granted to a

requesting subject.

Adjudication providers are required in WebLogic Server security realms only when

multiple authorization providers have been configured, and only one may be configured.

�CertPath Provider
CertPath providers complete certificate paths and validate x509 certificates6. CertPath

providers are of two types: CertPath Builders and CertPath Validators. The former

perform lookup and validation of a chain of certificates, and the latter perform certificate

revocation verification.

�Providers in Action
Oracle WebLogic Server administrators experience first hand the security service in

action all the time, even when working in a new, apparently empty, domain. When

creating a domain, the configuration wizard requires defining credentials for a user

that will become a domain administrator by virtue of being granted membership in the

administrators group. This username is a subject, and the password defined for it is its

credentials, both of which are stored in the embedded LDAP.

Out of the box, a domain includes built-in policies and security providers already

configured to authenticate and authorize this first subject as a domain administrator.

6�x509 is the designated name of a standard of public key cryptography.

Chapter 15 Security

238

The Administration Console is also associated by default to security policies in the

default realm.

Once an administrator enters a username and password at the login page, the

authentication and authorization providers, assisted by a role mapping provider,

perform their functions. If the credentials provided are correct, the subject will be

authenticated and granted the admin role.

The Administration Console is not the only place where the security providers are at

work. Every time a user, administrator or not, starts a session, the same general security

process is performed.

�Custom Security Configuration
The default security realm configuration may be sufficient to protect server resources in

many different scenarios. Typically, system administrators will just need to extend the

security configuration of the default realm, rather than replace it7.

Extending the configuration means that an administrator must define additional

users, groups, and security roles, as well as create and assign security policies to protect

custom domain resources.

A few typical yet useful ways to extend the security configuration of a WebLogic

Server domain include:

	 1.	 Configure additional security providers, for example to support

authentication of subjects in an external LDAP-based identity

management infrastructure.

	 2.	 Upgrade the security provider store to persist security data in a

database management system.

	 3.	 Configure an auditing provider to provide a documented trail of

administrative actions performed by administrators in a domain.

	 4.	 Implement single sign-on with an identity assertion provider,

SAML, and Kerberos.

7�WebLogic Server supports creating additional realms, although only one of them may be active.
It is a best practice to create a new realm based on the configuration of myrealm.

Chapter 15 Security

239

�LDAP Integration
The requirement to integrate Oracle WebLogic Server security with a third-party

directory service for authentication is quite common, simple to perform, and a good

example that demonstrates how the security configuration of a domain can be easily

extended to support fairly advanced requirements.

The review in this section will present the general guidelines that must be followed to

integrate any WebLogic Server domain with external LDAP directories for authentication

purposes.

WebLogic Server includes support for LDAP protocol versions 2 and 3, thus it should

be possible to integrate with any directory that conforms to those protocol versions.

Several product-specific LDAP authentication providers are available in all WebLogic

Server domains, supporting products such as Oracle Internet Directory, Microsoft Active

Directory, and OpenLDAP, among others.

Note  When integrating with an external LDAP directory for authentication, user
and group information is still primarily stored in the embedded LDAP.

Configuring an LDAP authentication provider in a WebLogic Server security realm

can be performed using the Administration Console or using WLST. Both methods

require the following information:

•	 Defining the order of execution8 in relation to other providers, and

whether authentication with this provider will be optional, required,

or sufficient.

•	 Connection settings, including destination host and port, principal

DN9, and credentials to connect.

•	 User and group filters including base DNs as well as attributes

that identify user and group objects, including whether or not the

retrieved user name is used as principal in WebLogic Server.

Despite the fact that LDAP is a standard protocol, most of the information we

use when configuring an authentication provider is product specific. To illustrate the

8�Required when the LDAP authentication provider will be configured alongside other providers.
9�A DN stands for distinguished name, and in the context of LDAP it represents a full search path
to a particular LDAP object.

Chapter 15 Security

240

integration, our WebLogic Server sample domain has been integrated with a simple

deployment of OpenLDAP version 2.410. Once the provider was selected and given an

identifier, the key configuration properties and values were entered as follows:

•	 Principal: cn=admin,dc=garnica,dc=mx

•	 User base DN: ou=People,dc=garnica,dc=mx

•	 User name attribute: cn

•	 User object class: person

•	 User filter: (&(cn=%u)(objectclass=person))

•	 Group base DN: ou=Groups,dc=garnica,dc=mx

•	 Group object class: groupOfNames

•	 Group filter: (&(cn=%g)(objectclass=groupOfNames))

This configuration expects that our LDAP schema contains two organizational units,

named Users and Groups. These in turn are expected to contain all interesting objects

of types person and groupOfNames. These filters are specified as LDAP search starting

points for our lookups.

Our sample LDAP schema comprises two groups and two users. One group is

named Administrators with a user named Jane Doe, and another group is named Users

containing a user named John Doe.

After entering these details, the authentication provider configuration is complete11.

By accessing the Users and Groups tab in myrealm we find that users and groups from

OpenLDAP are now available for WebLogic Server as subjects for authentication and

authorization.

Figure 15-2 shows user and group identities in our sample implementation,

propagated from OpenLDAP to myrealm in WebLogic Server.

10�OpenLDAP is a free, open source implementation of the LDAP protocol.
11�Configuring an LDAP authentication provider is not a dynamic change and therefore requires

restarting the Administration Server.

Chapter 15 Security

241

At this point, the propagated identities are eligible for additional interaction with

other security providers. In fact, we created an Administrator group in our OpenLDAP

schema precisely to illustrate that interaction.

Since a built-in policy states that the system role admin is granted to members

of a group named Administrators, user Jane Doe, who is a member of this group in

OpenLDAP, may now log in to the Administration Console and be granted full admin

privileges.

Figure 15-3 shows our OpenLDAP identity Jane Doe, authorized as a WebLogic

Server administrator.

Figure 15-2.  LDAP users and groups in a WebLogic Server security realm

Chapter 15 Security

242

In scenarios like these, it would be easier for an organization to leverage the

propagated identities from their own administrators group in their LDAP directory,

rather than maintaining two sets of administrators.

�Recommended Exercises
	 1.	 Install and configure an auditing provider.

	 2.	 Create a fully functional security realm based on the configuration

of myrealm.

	 3.	 Configure a DBM.S-based security store for a security realm

�Certification Questions
	 1.	 Authorization providers are optional in a security realm.

a.	 True

b.	 False

	 2.	 It is possible to restrict access to an application at certain hours of

the day using XACML policies.

a.	 True

b.	 False

Figure 15-3.  LDAP identity granted WebLogic Server administration
privileges

Chapter 15 Security

243

	 3.	 Security provider that supports single sign-on using Kerberos:

a.	 CertPath provider

b.	 Identity assertion provider

c.	 Adjudication provider

	 4.	 Built-in role in myrealm with read-only access to the

Administration Console:

a.	 Operator

b.	 Deployer

c.	 Monitor

d.	 None of the above

	 5.	 Supported repositories for security data:

a.	 File system

b.	 LDAP

c.	 DBMS

d.	 All of the above

�Coming Up
The next chapter is about upgrading Oracle WebLogic Server domains from the 11g

version series to 12c Release 1. It also touches on the requirements and practices to back

up a production domain.

Chapter 15 Security

245
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_16

CHAPTER 16

Backup and Upgrade
Performing backups and recovering Oracle WebLogic Server environments are really

not that different from doing so in other enterprise software environments. If anything,

the one critical difference is knowing what to back up precisely. The rest of backup

considerations and practices can be borrowed from experience administrating other

systems. The same is mostly true about restoring and recovering from backup.

Things are completely specific in upgrading from previous WebLogic Server versions.

In the context of WebLogic Server, Oracle specifies exactly what can be upgraded and

how. Furthermore, the upgrade process we will cover in this chapter, from WebLogic

Server 11g version series to 12c release 1, might be different and incompatible with the

process to upgrade to future 12c releases and beyond.

�Backup and Recovery
The scope of activities related to backup and recovery that administrators must perform

varies greatly, depending on the type and size of organization they are in. Some system

administrators may have responsibility to back up all components of an entire solution,

including operating system configurations, structured and unstructured data, identity

management directories, network services configuration, networking configurations,

and so forth. For obvious reasons, this perspective is out of scope of this book.

Our review focuses on the scope of work that administrators are responsible to

perform regarding WebLogic Server environments. This is the perspective covered in

exam 1Z0-133 and the focus of our review.

Because of their nature, backup and recovery operations are optimally performed

when they are automated. Human error is all too frequent, more so when taking

backups, which may result in data that is useless to properly restore and recover a

system. In large organizations, automating backups may simply mean including

246

WebLogic Server domains in backup processes that are already set up and performed

regularly by enterprise backup systems. In smaller companies, startups perhaps, it

may just mean scripting backup operations so that they are performed without user

intervention. In any case, automating backups should be a priority.

In addition to automation, there are four fundamental considerations regarding

backup and recovery that we will review, these are frequency, integrity, mode, and

scope.

�Frequency
Backup operations must be performed at regular intervals. However, every organization

should determine what the right frequency is for them to perform backup operations,

according to their unique needs.

For example, organizations that have addressed all single points of failure in their

systems have different needs and options for performing backups than those who are

just starting down the road to implement high availability.

The right frequency is always related to risk calculation. The higher the risk, the

greater is the need to perform backups more frequently. In transactional systems, for

example, restoring today from a backup archive that is a month old will not be enough

to recover the system to the required state. Backing up systems frequently is an absolute

requirement for production systems.

�Integrity
Backup operations bring to mind the question of integrity of backup data. Every time a

backup is performed, regardless of the frequency, the resulting backup artifacts must

be tested for integrity. Sometimes this may be as simple as calculating hashes of both,

source and backup files. Other times it may involve having a third party to pseudo-

randomly verify individual files for integrity. In certain scenarios, verifying integrity of

backups may be a much more complex process.

Perhaps the ultimate test of integrity is to actually restore from backup, to confirm

that the system can be brought back to the desired point in time. It is advisable to

perform this level of verification at regular intervals too.

Chapter 16 Backup and Upgrade

247

�Mode
Backup operations can be performed on a system that is up and running. We call these

online backup operations. Obviously, backup operations performed when a system is

stopped are referred to as offline backups.

Online backups may result in less consistent backup data than offline backups. This

is due to the fact that between the times a backup operation is started and before it is

completed, target files may change. One way to overcome this situation is to implement

a backup system that logs changes to files as they occur, very similar to the role that

t-logs1 play in WebLogic Server transactions. This would also require a process by which

the differences are reconciled. Logs themselves must obviously be included in the

backup.

The upside to online backups is that they may be performed without incurring

system downtime. If the degree of consistency obtained from an online backup is

sufficient, online backups are an excellent choice to preserve system uptime.

Offline backups are found in the opposite extreme. They are consistent but they

demand the target system to be taken offline. This can be prohibitive in cases where

backup operations take considerable time to execute.

�Scope
There are fundamentally two scopes that can be defined to back up a system, full

and incremental. Obviously, incremental backups are more efficient but they have

a dependency on the integrity and availability of previous backup data. Even in the

presence of an incremental backup system, full backups are still needed everywhere

though. They should be taken around certain critical events in the life of a system, for

example, after a major system upgrade or before a system migration.

�WebLogic Server Backups
All four aspects of backup operations just reviewed apply to backups of Oracle WebLogic

Server domains but there is no right or wrong approach to any of them. They should all

be taken into account when planning and performing backup operations of a WebLogic

Server domain.

1�The role of T-logs in WebLogic Server transactions was reviewed in Chapter 13.

Chapter 16 Backup and Upgrade

248

Now, in reviewing what specific artifacts should be covered by a WebLogic Server

environment backup process, the short answer, definitely expected, is that you must

back up every component and configuration that your environment state depends on.

This means everything that cannot be replaced by an out-of-the-box component and

that is required to restore a system to its desired state.

The long, general answer is that a full WebLogic Server domain backup must include

certain parts of MIDDLEWARE_HOME2, all of DOMAIN_HOME, as well as application

archives and other artifacts, such as deployment plans, which are not kept in the file

system structure at either of those paths.

The same is true about other custom configurations that have been made to a

domain, for example, the location of file stores and transaction logs. They must be

included in a domain backup.

There are important differences between backing up managed servers and backing

up the administration server. As explained in previous chapters, managed servers

maintain copies of certain information that are centrally kept in the administration

server, such as the main domain configuration repository3 and the contents of the

embedded LDAP. Upon starting, managed servers will contact the administration server

to obtain a fresh copy of those artifacts. Therefore, it is sufficient to back up managed

servers by exporting their configuration using the pack command with the managed

option. One such domain template is required from each remote machine that hosts

managed servers.

This approach works better for domains whose servers are configured with DNS

names instead of IP addresses in their respective listen-address properties. Otherwise,

after using the unpack command to restore the domain template in a managed host,

but before it is started, the original IP address definitions must be updated to match the

target host.

Oracle WebLogic Server includes an optional, automated option to back up a

domain configuration. Figure 16-1 shows this option in the Administration Console.

2�It is not uncommon that organizations choose to back up the entire MIDDLEWARE_HOME as it
contains the full product installation directory.

3�Since the configuration repository is file system based, this means the config directory is at the
domain root level.

Chapter 16 Backup and Upgrade

249

The Configuration Archive Enabled option is accessible from the domain

configuration page, in the General tab, under the Advanced section. Once enabled, as

shown above, it is also possible to define the number of configuration archives to keep.

These two values are also configurable using other methods, by updating the

ConfigBackupEnabled and ArchiveConfigurationCount properties of the DomainMBean

object. Listing 16-1 shows how to apply this configuration using a WLST online session.

Listing 16-1.  Updating WebLogic Server domain configuration backup using

WLST

wls:/offline> connect('weblogic',###,'127.0.0.1:7001')

Connecting to t3://127.0.0.1:7001 with userid weblogic ...

...

wls:/sample/serverConfig> edit()

...

wls:/sample/edit !> startEdit()

...

wls:/sample/edit !> set('ConfigBackupEnabled',true)

wls:/sample/edit !> set('ArchiveConfigurationCount',3)

wls:/sample/edit !> save()

...

wls:/sample/edit !> validate()

Figure 16-1.  WebLogic Server domain configuration auto-backup option

Chapter 16 Backup and Upgrade

250

...

wls:/sample/edit !> activate()

...

The following non-dynamic attribute(s) have been changed on MBeans

that require server re-start:

MBean Changed : com.bea:Name=sample,Type=Domain

Attributes changed : ArchiveConfigurationCount, ConfigBackupEnabled

Activation completed

As shown in this code, the change requires restarting the administration server.

When this option is enabled for the first time, every time it starts, the administration

server will create two archives, one named config-original.jar and another named

config-booted.jar. As per their names, one will contain the previous or original domain

configuration, and the second will contain the configuration that was used to boot the

administration server.

Additionally, for each change in domain configuration thereafter, the administration

server will create an archive named config-N.jar where N represents an index, counting

up to the number specified by the ArchiveConfigurationCount property.

These configuration archives back up the contents of the config directory located at

the domain root level, including the master configuration file config.xml, applications

that were deployed in stage mode, Node Manager encrypted credentials, and system

configuration modules such as JDBC data sources. Once generated, the configuration

archives are an important asset to include when performing domain backups.

�Managed Server Independence
As explained before, backing up the administration server is a very important aspect

of WebLogic Server domain backup. Picking up the notion of backup modes discussed

in this chapter, stating that in terms of consistency it is better to perform backups in

offline mode, Oracle WebLogic Server includes a feature that enables backing up an

administration server in offline mode, while all managed servers remain online and

unaffected. This feature is called Managed Server Independence, and is enabled by

default in all managed servers. Figure 16-2 shows this option in the Administration

Console.

Chapter 16 Backup and Upgrade

251

The Managed Server Independence Enabled option is accessible in the

Administration Console, for each server instance, in the Configuration page, under the

Tuning tab, in the Advanced section.

The two additional options, shown in the figure above, define when a managed

server instance enters independence mode. The Period Length property configures the

heartbeat period in milliseconds, which is set at one minute by default. The Idle Periods

Until Timeout property specifies how many missed heartbeats until the administration

server is considered unreachable. This means that by default, managed servers enter

independence mode after four minutes.

Once backup operations in offline mode on an administration server are completed,

it may be restarted. Once it completes booting, it will contact managed servers and cause

them to abandon independence mode.

�Recovery
Recovering an Oracle WebLogic Server environment requires several operations. A typical

workflow would include the following tasks:

	 1.	 Restoring a backup archive

	 2.	 Performing sanity checks on the recovered files

	 3.	 Starting servers

	 4.	 Starting applications in administration mode

Figure 16-2.  WebLogic Server Managed Server Independence option

Chapter 16 Backup and Upgrade

252

	 5.	 Performing additional sanity checks on applications

	 6.	 Enabling access to clients

Restoring archives of administration servers is a simple operation. Often it involves

using similar operations to those performed when archiving the files in the first

place. For instance, it may involve using a tool such as jar, or tar, with the appropriate

extraction options in place. Listing 16-2 shows how to extract a domain configuration

archive that was created automatically by the administration server of our sample

domain.

Listing 16-2.  Extracting a domain configuration archive

[gustavo@apress configArchive]$ pwd

/home/gustavo/apress/lab/domains/sample/configArchive

[gustavo@apress configArchive]$ jar xvf config-1.jar

...

 created: deployments/

 inflated: deployments/readme.txt

 created: deployments/HelloWorld-Web.war/

 created: deployments/HelloWorld.war/

 created: jdbc/

 inflated: jdbc/readme.txt

 inflated: jdbc/SampleDS-9369-jdbc.xml

...

 inflated: config.xml

As shown in this code, the jar tool is used with options xvf, which mean extract a file

in verbose mode. Restoring managed servers involves using the unpack tool.

Note A dministrators are responsible to ensure that files are restored to
compatible locations in target hosts, and that references in config.xml to DNS
names or IP addresses are correct.

Initial sanity checks could verify constraints such as whether or not files have the

correct user and group ownership, and the correct access rights applied.

Chapter 16 Backup and Upgrade

253

Additional sanity checks before opening up applications for client access may

involve verifying if connectivity to databases or other remote resources has also been

restored.

�Upgrade
Upgrading an Oracle WebLogic Server 11g environment version 10.3.64, to 12c release 1

version 12.1.x, fundamentally aims to have newer product binaries run a domain created

using a prior version of product binaries.

The process starts by checking that all components required by the target

environment are compatible with WebLogic Server 12c. This includes operating system

support, JDK version, JDBC access, and so forth, and resolving any conflicts.

Next, administrators install Oracle WebLogic Server 12c release 1 on all target hosts,

as they would on a new environment. The rest of this section is focused on upgrading the

domain5, and it involves:

•	 Using the Domain Reconfiguration Wizard to perform the actual

upgrade

•	 Distribute the domain to each managed host in the domain using

pack and unpack

The reconfiguration wizard file reconfig.sh in WebLogic Server 12c is available in the

same location as the regular configuration wizard, meaning at MIDDLEWARE_HOME/

oracle_common/common/bin.

The first screen of the reconfiguration process allows selecting the target domain.

Advancing to the next step in the process performs the actual domain migration by:

•	 Reading the domain

•	 Selecting and applying domain templates

•	 Validating the upgraded domain

4�Oracle WebLogic Server 11g versions prior to 10.3.6 are not eligible for direct upgrade to 12c. The
process for these versions requires patching the MIDDLEWARE_HOME to 10.3.6, and running
the Domain Upgrade Wizard. The process to upgrade an Oracle WebLogic Server environment to
10.3.6 is out of the scope of this book.

5�Oracle recommends upgrading non-production environments before attempting to upgrade a
production environment.

Chapter 16 Backup and Upgrade

254

Figure 16-3 shows the domain migration results screen after running the

Reconfiguration Wizard on a sample WebLogic Server 11g domain.

Figure 16-3.  Domain migration results screen in Domain Reconfiguration
Wizard

A subsequent screen, shown in Figure 16-4, enables an administrator to reconfigure

Node Manager according to 12c modes and settings.

Chapter 16 Backup and Upgrade

255

The screens shown in the previous figures are the core of a migration process when

using the Reconfiguration Wizard. The remaining screens are entirely optional. They

allow an administrator to change configuration settings on domain components, just like

when a domain is created for the first time.

At this point, server instances in the domain are ready to be started for final sanity

checking, after which the migration process would be complete.

Figure 16-4.  Node Manager configuration in Domain Reconfiguration
Wizard

Chapter 16 Backup and Upgrade

256

�Recommended Exercises
	 1.	 Verify differences in consistency by performing online and offline

backups of a WebLogic Server domain.

	 2.	 Verify differences in contents of archives config-original.jar and

config-booted.jar in a domain that has domain configuration

archiving enabled.

	 3.	 Attempt to migrate a domain that has references to different DNS

names or IP addresses than a target system.

�Certification Questions
	 1.	 Integrity of a backup archive refers to:

a.	 Size of archive files as related to original data

b.	 Type of archive files as compared to original data

c.	 Location of archive files on a remote host

d.	 Consistency of archive files as compared to original data

	 2.	 A domain may be recovered from a managed server domain

template.

a.	 True

b.	 False

	 3.	 Versions of WebLogic Server 11g eligible for upgrade to WebLogic

Server 12c Release 1:

a.	 10.3.5

b.	 10.3.0

c.	 All of the above

d.	 None of the above

Chapter 16 Backup and Upgrade

257
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2_17

APPENDIX A

Answers to Sample
Questions
In this appendix, we list all sample certification questions presented and introduced at

the end of each chapter in our book, together with their correct answers.

The sample certification questions are meant to provide first-time test takers with

insight into the type and variety of questions in the actual certification exam. These

questions are not intended to represent the depth nor breadth of content of the 1Z0-133

certification exam.

�Overview
	 1.	 Enterprise applications may run directly on top of the Java SE

platform.

a.	 True

b.	 False

	 2.	 What are the certified Java SE versions to run Oracle WebLogic

Server instances?

a.	 All the latest

b.	 Java SE 7 only

c.	 Java SE 6 only

d.	 Java SE 6 and 7

e.	 Any

258

	 3.	 What fundamental component of the Java EE architecture is

provided by an application server?

a.	 The virtual machine

b.	 The runtime environment

c.	 The database drivers

d.	 The Management Console

e.	 None of the above

	 4.	 Provides support for creating Web Service clients and endpoints

using a REST architectural style:

a.	 JAXP

b.	 JAX-WS

c.	 JMX

d.	 All of the above

e.	 None of the above

	 5.	 What edition of WebLogic Server should I license if I intend to use

the Oracle JVM profiling tools?

a.	 WebLogic Server Standard Edition

b.	 WebLogic Server Enterprise Edition

c.	 WebLogic Server Suite

d.	 All of the above

e.	 None of the above

�Installation and Updates
	 1.	 Select the operating systems certified to run WebLogic Server 12c

in production environments:

a.	 Red Hat Linux 7

b.	 Ubuntu Linux 14.04

APPENDIX A Answers to Sample Questions

259

c.	 Microsoft Windows 7

d.	 Mac OS 10.5

e.	 Oracle Solaris 11

	 2.	 Select the product distribution types supported to run WebLogic

Server in production environments:

a.	 Physical media

b.	 WebLogic Server JAR file

c.	 Middleware Infrastructure JAR file

d.	 ZIP distributions

e.	 All of the above

	 3.	 Select the option that lists the correct components of the standard

installation topology:

a.	 One administration server, one managed server, one machine,

one domain

b.	 Two administration servers, two managed servers, two

machines, one domain

c.	 One administration server, one cluster, two managed servers,

one machine, one domain

d.	 None of the above

e.	 All of the above

	 4.	 Select all of the supported installation methods:

a.	 Graphic

b.	 Console

c.	 Silent

d.	 Remote

e.	 Local

APPENDIX A Answers to Sample Questions

260

	 5.	 Select the required command to apply a security patch:

a.	 bsu -install

b.	 bsu -apply

c.	 opatch install

d.	 opatch apply

e.	 opatch secure

�Domains
	 1.	 How many servers can be designated as administration servers in

a domain?

a.	 One and only one

b.	 More than one

c.	 Two

d.	 Any

	 2.	 Each managed server in a domain requires its own product

installation to run.

a.	 True

b.	 False

	 3.	 Is it possible to run more than one domain in a single host?

a.	 True

b.	 False

	 4.	 What format is used to persist the domain configuration?

a.	 A database schema

b.	 A set of XML files

c.	 In-memory

APPENDIX A Answers to Sample Questions

261

	 5.	 Select the tools that enable domain configuration and

customization:

a.	 The configuration wizard

b.	 The administration console

c.	 WLST

d.	 The pack and unpack commands

e.	 All of the above

�Node Manager
	 1.	 What are the two Node Manager implementations available on

WebLogic Server 12c?

a.	 Java-based and script-based

b.	 Java-based and Windows-based

c.	 Windows-based and UNIX/Linux-based

d.	 Java-based and Bash-based

	 2.	 WebLogic Server Node Manager can control server instances in

more than one domain.

a.	 True

b.	 False

	 3.	 Select the supported options to secure Node Manager traffic:

a.	 One-way SSL

b.	 Two-way SSL

c.	 Passphrase

d.	 SSH

e.	 All of the above

APPENDIX A Answers to Sample Questions

262

	 4.	 Node Manager is capable of automatically restarting any

WebLogic Server instance.

a.	 True

b.	 False

	 5.	 What is the WLST command to configure Node Manager on

multiple WebLogic Server machines?

a.	 configure()

b.	 createConfig()

c.	 nmAuthorize()

d.	 nmEnroll()

�Servers
	 1.	 A server instance may be started using several commands.

a.	 True

b.	 False

	 2.	 What is the name of the standard script to start a managed server

instance?

a.	 startServer

b.	 startWebLogic

c.	 startManagedServer

d.	 startManagedWebLogic

	 3.	 Which script sources the setUserOverrides script to apply

configuration customizations?

a.	 setDomainEnv

b.	 startWebLogic

c.	 startServer

d.	 None of the above

APPENDIX A Answers to Sample Questions

263

	 4.	 Oracle WebLogic Server provides standard server start scripts for

each supported platform.

a.	 True

b.	 False

	 5.	 What is the correct method to add a library to a server instance

configuration?

a.	 The PATH

b.	 The CLASSPATH

c.	 A system property

d.	 All of the above

�Configuration Management
	 1.	 The edit lock on acquired on a WLST session is released

automatically when closing the session.

a.	 True

b.	 False

	 2.	 What is the group in the WebLogic Server security realm that

effectively has read-only access to the Administration Console?

a.	 Readers

b.	 Monitors

c.	 Watchers

d.	 All of the above

	 3.	 What types of configuration changes may be reverted in a

WebLogic Server domain?

a.	 Saved

b.	 Activated

c.	 None

d.	 All

APPENDIX A Answers to Sample Questions

264

	 4.	 What are the arguments to the encrypt() method to create

encrypted byte arrays in WLST?

a.	 String to encrypt

b.	 String to encrypt, encryption algorithm

c.	 String to encrypt, property to update

d.	 String to encrypt, domain path

e.	 None of the above

	 5.	 It is possible to automate all types of domain configuration

changes using WLST.

a.	 True

b.	 False

�Logging and Monitoring
	 1.	 It is possible to define a custom log message severity.

a.	 True

b.	 False

	 2.	 What type of Java object distributes log messages to a destination?

a.	 Logger

b.	 Log4J

c.	 Handler

d.	 All of the above

	 3.	 It is possible for applications to send custom log messages to the

server log file.

a.	 True

b.	 False

APPENDIX A Answers to Sample Questions

265

	 4.	 WebLogic Server can report information about operating system

users logged in the system.

a.	 True

b.	 False

	 5.	 Contains statistical information about the number of threads

allocated:

a.	 Channels

b.	 Performance

c.	 Workload

d.	 None of the above

�Networking
	 1.	 Select all protocols supported by the default secure channel:

a.	 HTTPS

b.	 T3S

c.	 SNMP

d.	 Cluster-broadcast-secure

e.	 All of the above

	 2.	 What objects store the default network channels configuration?

a.	 NetworkAccessPointMBean

b.	 ServerMBean

c.	 ConfigurationMBean

d.	 SocketMBean

e.	 None of the above

APPENDIX A Answers to Sample Questions

266

	 3.	 Select all required properties to configure a cluster replication

channel:

a.	 Tunneling

b.	 HTTP Enabled

c.	 Outbound

d.	 External listen address

e.	 External port

	 4.	 It is possible to configure two network channels using the same

listen address and port number as long as:

a.	 They both support secure protocols

b.	 They both support different protocols

c.	 They both support the same protocols

d.	 It is not possible

e.	 All of the above

	 5.	 When no listen address has been specified in any network

channel, the following occurs:

a.	 Server instances fail to start

b.	 Server instances bind to localhost and loopback

c.	 Server instances bind to all IP addresses available in the
host

d.	 A network channel is automatically created using the host IP

address

e.	 None of the above

APPENDIX A Answers to Sample Questions

267

�Cluster Basics
	 1.	 Select the web servers supported by WebLogic Server to provide

the web tier:

a.	 Apache HTTP Server

b.	 Oracle HTTP Server

c.	 Microsoft IIS

d.	 All of the above

	 2.	 What is the name of a proprietary header in the WebLogic Server

plug-in?

a.	 True-Client-IP

b.	 WL-Proxy-Client-IP

c.	 WL-Client-Proxy

d.	 None of the above

	 3.	 Name the two fundamental benefits of WebLogic Server clusters:

a.	 Reliability and robustness

b.	 Scalability and resilience

c.	 Load balancing and failover

d.	 Capacity and performance

	 4.	 What is the main benefit of having the Oracle WebLogic Server

plug-in in the web tier?

a.	 Ability to recognize failed members

b.	 Licensing

c.	 Compatibility

d.	 Flexibility

APPENDIX A Answers to Sample Questions

268

	 5.	 Select all features of dynamic servers:

a.	 Require OS virtualization

b.	 Enable a domain to scale out

c.	 Enable server instances to scale up

d.	 All of the above

�Clusters Advanced
	 1.	 Cluster communication occurs at the following TCP/IP network

layer:

a.	 Network

b.	 Transport

c.	 Application

d.	 None of the above

	 2.	 Select the protocols that WebLogic Server uses to replicate cluster

status information:

a.	 IP

b.	 TCP

c.	 UDP

d.	 All of the above

	 3.	 What is the default cluster messaging mode in WebLogic

Server 12c?

a.	 Unicast

b.	 Multicast

c.	 None of the above

APPENDIX A Answers to Sample Questions

269

	 4.	 A cluster member will be considered failed using unicast after

how many consecutive missed heartbeats:

a.	 One

b.	 Two

c.	 Three

d.	 None of the above

	 5.	 Select all prerequisites for using multicast for cluster messaging:

a.	 Network support

b.	 Address and port number

c.	 Native IO

d.	 All of the above

�Clusters Proxies
	 1.	 WebLogic Server replicates session information stored in:

a.	 Database

b.	 File system

c.	 HTTPSession objects

d.	 Coherence*Web

	 2.	 Durable session persistence mechanism:

a.	 In-memory

b.	 Replicated

c.	 JDBC

d.	 File

APPENDIX A Answers to Sample Questions

270

	 3.	 Load-balancing algorithms supported by the WebLogic Server

plug-in:

a.	 Round-robin

b.	 Weighted

c.	 Sticky

d.	 All of the above

e.	 None of the above

	 4.	 Methods to improve session replication performance:

a.	 Database

b.	 Asynchronous replication

c.	 File system

d.	 Session cache

	 5.	 HTTP session configuration data is stored in:

a.	 weblogic.xml

b.	 web.xml

c.	 wl_servlet_sessions

d.	 None of the above

�JDBC
	 1.	 JDBC drivers translate SQL sentences to native data store calls.

a.	 True

b.	 False

	 2.	 Type of a pure Java JDBC driver:

a.	 Type 2

b.	 Type 4

c.	 None of the above

d.	 All of the above

APPENDIX A Answers to Sample Questions

271

	 3.	 Language or notation in which data source configuration is stored

in WebLogic Server:

a.	 Java

b.	 JSON

c.	 XML

d.	 Any of the above

	 4.	 Load balancing in multi data sources is restricted to round-robin.

a.	 True

b.	 False

�Transactions
	 1.	 WebLogic Server supports XA+ protocol version 2.

a.	 True

b.	 False

	 2.	 Resource managers may take part in prepare phase and be absent

in commit phase of a distributed transaction.

a.	 True

b.	 False

	 3.	 XA interfaces implemented in JTA are high-level interfaces,

available to applications:

a.	 All of them are

b.	 None of them are

c.	 Some of them are

APPENDIX A Answers to Sample Questions

272

	 4.	 Property that limits the maximum time allowed for a transaction

to remain in commit phase:

a.	 Timeout seconds

b.	 Abandon timeout seconds

c.	 Maximum duration of XA calls

�Application Deployment
	 1.	 WebLogic Server application deployment supports scripted

automations using a variety of tools.

a.	 True

b.	 False

	 2.	 WebLogic Server supports zero downtime redeployment of all

types of applications.

a.	 True

b.	 False

	 3.	 Redeployment mode that replaces class loaders immediately:

a.	 Production redeployment

b.	 In-place redeployment

c.	 Both of them

	 4.	 It is possible to undeploy an application while allowing existing

sessions to complete gracefully.

a.	 True

b.	 False

APPENDIX A Answers to Sample Questions

273

�Security
	 1.	 Authorization providers are optional in a security realm.

a.	 True

b.	 False

	 2.	 It is possible to restrict access to an application at certain hours of

the day using XACML policies.

a.	 True

b.	 False

	 3.	 Security provider that supports single sign-on using Kerberos:

a.	 CertPath provider

b.	 Identity assertion provider

c.	 Adjudication provider

	 4.	 Built-in role in myrealm with read-only access to the

Administration Console:

a.	 Operator

b.	 Deployer

c.	 Monitor

d.	 None of the above

	 5.	 Supported repositories for security data:

a.	 File system

b.	 LDAP

c.	 DBMS

d.	 All of the above

APPENDIX A Answers to Sample Questions

274

�Backup and Upgrade
	 1.	 Integrity of a backup archive refers to:

a.	 Size of archive files as related to original data

b.	 Type of archive files as compared to original data

c.	 Location of archive files on a remote host

d.	 Consistency of archive files as compared to original data

	 2.	 A domain may be recovered from a managed server domain

template.

a.	 True

b.	 False

	 3.	 Versions of WebLogic Server 11g eligible for upgrade to WebLogic

Server 12c Release 1:

a.	 10.3.5

b.	 10.3.0

c.	 All of the above

d.	 None of the above

APPENDIX A Answers to Sample Questions

275
© Gustavo Garnica 2018
G. Garnica, Oracle WebLogic Server 12c Administration I Exam 1Z0-133,
https://doi.org/10.1007/978-1-4842-2562-2

Index

A
ACID properties, 200
Active GridLink, 195
Administration console

administration server, 84
clustering

add members, 139
cluster address, 138
load algorithm, 138
member warmup timeout, 139
transaction affinity, 138
weblogic plug-in, 138

domain security system, 84
GUI

change management, 87
domain configuration, 85
landing page, 85
main panel, 86
tree structure, 86

login page, 83
SSL configuration, 83

Ant task, 213
Apache HTTP server, 175–177
Application deployment

admin mode, 224–225
Ant task, 213
configuration plans

deploying, 221
distributing applications, 223–224
extract, 218–219

stage mode, 222–223
update, 219–220
weblogic.PlanGenerator tool, 217

deployment units, 216
preparatory phase, 214
production redeployment, 226–227
scenarios, 214
three-level directory, 215

Application layer, 150
Automating backups, 246

B
Backup

automation, 246
frequencies, 246
full backups, 247
incremental backups, 247
integrity, 246
offline backups, 247
online backups, 247

Big data, 183
Business Process Management

(BPM), 6

C
CertPath providers, 237
CLASSPATH variable

default value, 70
defined, 68

https://doi.org/10.1007/978-1-4842-2562-2

276

JAR files, 68, 70–71
sequences, 71

Clustering
Administration console

add members, 139–140
cluster address, 138
load algorithm, 138
member warmup timeout, 139
transaction affinity, 138
weblogic plug-in, 138

application server, 132
capacity, 137
cluster address, 137
configuration wizard, 137–138
deployment architectures, 178–179
DNS names, 137
dynamic clusters

control, 143
server templates, 142–143, 145
weblogic server plug-ins, 143

health status, 151
high-level architecture, 134–137
IP addresses, 137
JNDI replication, 152
monitoring, 158–159
multicast, 153–155
protocol, 152–153
proxies, 170
replication channels, 158
reverse proxy architecture, 134–135
three-tier architecture, 132
tools, 137
unicast, 153, 155–158
WLST, 140

Coherence*Web, 167
commEnv script, 65

Contexts and Dependency
Injection (CDI), 8

Crash recovery, 58
Credential mapping provider, 236
Current management object (cmo), 93

D
Data integrity, 199
DBMS

JDBC driver, 184
structured data, 183

Deployment units, 215–216
Domain

administration server, 28
clusters, 28
coherence clusters, 29
components, 28
configuration wizard, 33
config.xml file, 32–33
definition, 27
flow diagram, 36–37
IP addresses/DNS names, 35
managed servers, 28, 39
pack and unpack

commands, 33, 37–39
single product installation, 29
startup modes, 35
target directory

autodeploy, 31
bin, 31
config, 31
config/jdbc, 31
config/jms, 31
console-ext, 31
init-info, 31
lib, 31

CLASSPATH variable (cont.)

Index

277

pending, 31
security, 32

target directoryservers, 32
topology, 29–30
wls.jar templates, 34
WLST, 34

Domain security system, 84

E
EJB, 9
eXtented Architecture (XA), 201

F
Fedora Linux, 69
Full backups system, 247

G
Graphic installation method, 22
GUI layout

domain configuration, 85
landing page, 85
main panel, 86
tree structure, 86

H
Hardware load balancer, 171, 179–180
HTTPClusterServlet, 172
HTTP sessions

cache, 170
DynamicServerList property, 180
file persistence, 169
hardware load balancer, 179–180
JDBC persistence, 168–169

persistence methods, 167–168
replication

groups, 164–165
in-memory, 165–166
objects, 164

weblogic.xml file, 167–168
Hyper Text Transfer Protocol (HTTP), 5

 see also HTTP sessions

I
Identity assertion provider, 236
IETF RFC 9, 6455
Incremental backups system, 247
Integrated development environment

(IDE), 215
Internet Protocol (IP), 147–148

J, K
Java API for Restful Web Services

(JAX-RS), 8
Java API for XML Processing (JAXP), 5
Java API for XML Web Services

(JAX-WS), 5
Java Authentication and Authorization

Service (JAAS), 6
Java Connector Architecture (JCA), 6
Java Database Connectivity (JDBC), 5

architecture, 184
control tab, 191
database management systems, 185
data sources

Active GridLink, 195
Administration console, 188
connection objects, 186, 190
connection testing, 188

Index

278

JNDI tree, 188–189
modules, 186
non-XA drivers, 190
properties, 187
XA drivers, 190

debugging
entries on server log file, 192
scopes, 193
using WLST, 192

driver, 184
HTTP sessions persistence, 168–169
multi data source, 193–195
statistics tab, 191
testing tab, 191
type 4 driver, 185

Java Enterprise Edition (Java EE), 6
applications, 2–3
bean validation, 8
CDI, 8
evolution, 2
HTTP, 5
JAAS, 6
JAXP, 5
JAX-RS, 8
JA0058-WS, 5
JCA, 6
JDBC, 5
JMS, 5
JMX, 6
JNDI, 5
JPA, 5
JTA, 5
logical view, 3–4
managed beans, 8
platform, 2
profile, 8
updates

to EJB specification, 9
to JavaServer Faces specification, 9
to Servlet specification, 9

Java Management Extensions (JMX), 6
activation phase, 82
architecture, 81
change process, 82–83
clients, 80
MBeans, 80
tiers, 80
transactional process, 81

Java Message Service (JMS), 5, 10
Java Naming and Directory Interface

(JNDI), 5
replication, 152

Java Persistence API (JPA), 5
Java SE 7, 18
Java Standard Edition (Java SE)

platform, 2
Java technology in enterprise, 1
Java Transaction API (JTA), 5

configuration, 206–207
demarcation control, 206
specification, 205
transaction manager, 205
WebLogic Server transactions, 205
XA resources statistics, 210–211

Java virtual machine (JVM)
CLASSPATH variable, 68, 70–71
command, 61
command line, 75
commEnv script, 65
CompileThreshold option, 73
config.xml file, 75
credentials, 76
Fedora Linux, 69
flags, 72
flow chart, 64

Java Database Connectivity (JDBC) (cont.)

Index

279

JAR files, 74
jcmd tool, 69
methods, 62
PATH variable, 68–69
restart, 58
scripts, 63–64
setDomainEnv script, 65–67
setUserOverrides script, 66
startWebLogic script, 65, 67–68
system properties, 73–74

L
LDAP

administration privileges, 241–242
authentication provider

configuration, 239
properties, 240

users and groups, 240–241
Logging

components, 102
configure, 111
filters, 112
and handlers, 103
log files

domain log file, 108–109
filter messages, 109
HTTP subsystem, 107
JTA subsystems, 108
Node Manager, 107
server log files, 106
tools, 110

message attributes, 105
messages, 103
message severity, 104
server log files, 107
timestamp attribute, 105
two-phase process, 102

M
Managed Server Independence

Idle Periods Until Timeout property, 251
option, 251
Period Length property, 251

Managed servers in backup process, 248
MBeans, 80
Monitoring server

configuration page, 114
health status, 115–116
Monitoring Dashboard, 116–117

Multicast, 150, 153–155

N
Networking channels

Administration console, 121–122
administration port, 124–125
internal channels, 123
log messages, 120
in production environment, 125–126
properties, 122
requirements, 120
T3 protocol, 122
tunneling, 122
virtual hosts, 126–127

Node Manager
administration server, 44, 57
configuration files, 50
crash recovery, 58
demonstration certificates, 48
Java-based version, 43–44
JVM restart, 58
log files, 50, 51
managed servers, 58
manual configuration, 49–50
multiple-host domain

configuration, 46–47

Index

280

per-domain mode, 47, 52
per-host mode, 47, 52
properties, 52–53
script-based version, 44
server files, 50
single-host domain configuration, 45–46
SSL certificates, 48, 55–56
UNIX/Linux, 57
Whole Server Migration, 56
wizard, 43

O
Offline backups system, 247
Online backups system, 247
OPatch, 21, 24
Oracle Application Developer, 16
Oracle Fusion Middleware

BPM, 6
infrastructure, 16
JVM, 17
memory specifications, 17
product requirements, 17
SOA, 6
SPARC, 15
System spreadsheet, 14–15

Oracle HTTP Server (OHS)
Apache HTTP server, 175
collocated mode, 173–174
configuration, 174–175
header, 175
IfModule, 175
installation type, 172–173
Linux, 176
standalone mode, 173

Oracle WebLogic Server
backups process

auto-backup option, 249
managed servers, 248
using WLST online

session, 249–250
installation

administrative tools, 20
core server, 20
database support, 20
directory, 19
disk space, 18
examples, 21
flow chart, 14
graphic installation method, 22
location, 19
networking, 18
OPatch, 21, 24
open source components, 21
removal tool, 24
silent installation method, 22–23
structure, 23
type, 20

Oracle Fusion Middleware (see Oracle
Fusion Middleware)

Oracle WebLogic Server 12c, 253–255
licensing offerings, 7
networking, 18
version 12.1.2

clusters, 10
IETF RFC 9, 645
installation features, 9
JMS configuration, 10
managed servers, 9
templates, 10
TopLink, 10

Node Manager (cont.)

Index

281

P, Q
Pack commands, 33, 38
PATH variable

default value, 69
defined, 68

R
Reconfiguration process, 253–255
Recovery, 251–252
Remote Method Invocation (RMI), 152
Reverse proxy architecture, 134–135

S
Security

adjudication provider, 237
authentication process, 232
authentication provider, 235
authorization process, 232
CertPath providers, 237
configuration, 238
credential mapping provider, 236
custom security data, 233
extending configuration, 238
global security data, 233
identity assertion provider, 236
policies, 232, 236
principals, 232
providers, 234
realm, 232–233
store, 233–234
subject, 232
XACML

authorization provider, 235
role mapping provider, 237

Service Oriented Architecture
(SOA), 6

Servlet, 163
setDomainEnv script, 65–67
Silent installation method, 22–23
Sockets, 149
Software-based load

balancer, 171–172
SPARC, 15
SSL certificates, 48

digital certificate, 55
identity certificate, 55–56
public key, 55

startWebLogic script, 65, 67–68
Structured data, 183

T
Three-tier architecture, 133
TIOBE programming language, 1
T3 protocol, 122
Transactions

ACID properties, 200
JTA (see Java Transaction API (JTA))
log, 208
2PC

aborted transaction, 203
commit phase, 202
prepare phase, 202

XA, 201
Transmission Control

Protocol (TCP), 147–148
Two-Phase Commit (2PC)

aborted transaction, 203
commit phase, 202
prepare phase, 202

Index

282

U
Undeployment application, 227–228
Unicast, 150, 155–158
Unpack command, 33, 38–39
Unstructured data, 183
User Datagram Protocol (UDP), 149

V
Virtual hosts, 126–127

W
WebLogic Diagnostics Framework

(WLDF), 158
WebLogic plug-in, 138
WebLogic Scripting Tool (WLST), 27, 34

administration server, 89–91
batch mode, 94
CA, 90
clustering, add members, 139
cmo, 93
command prompt, 89

common commands, 92
credentials, 90
disabling SSL listen port of managed

server, 96
encrypted byte array, 94
Jython version 2.2, 88
MBean hierarchy, 93–94
offline, 91, 95
online, 91–92, 95–96, 249–250
WLDF, 93

WebLogic Server
administrators, 2
plug-ins, 143

WebLogic Server 12c, Node Manager, 43
WebLogic Server monitoring subsystem

(WLDF), 93
WebLogic Server Transactions, 205

X, Y, Z
XACML

authorization provider, 235
role mapping provider, 237

XA drivers, 190

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Overview
	 For New Administrators
	 Enterprise Applications
	 Java Application Servers
	 Java EE Services
	 Oracle Fusion Middleware
	 Oracle WebLogic Server

	 New Features in WebLogic Server 12c
	 Updates Required by Java EE 6
	 Other Functionality Changes and Additions
	 Conclusion

	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 2: Installation and Updates
	 Supported Configurations
	 Fusion Middleware Infrastructure

	 Product Requirements
	 CPU and Memory Requirements
	 Disk Space
	 Networking
	 Java SE

	 Installation Overview
	 Installation Methods
	 Installation Structure
	 Updating and Patching
	 De-installation
	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 3: Domains
	 Definition
	 Domain Components
	 Product Installation and Domains
	 Domain Topology

	 Domain Structure
	 Configuration Repository

	 Configuration Methods
	 Domain Templates
	 Planning Domain Configuration
	 Configuration Flow

	 Domain Propagation
	 Pack Command
	 Unpack Command
	 Propagation Process

	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 4: Node Manager
	 Overview
	 Node Manager Interactions

	 Configuration
	 Automatic Configuration
	 Manual Configuration

	 Structure and Properties
	 Configuration Files
	 Log Files
	 File Locations
	 Properties
	 SSL Configuration

	 Operation
	 Start the Administration Server
	 Start Managed Servers
	 Automatic JVM Restart
	 Crash Recovery

	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 5: Servers
	 Standard Startup
	 Available Methods
	 Standard Scripts
	 The startWebLogic Script
	 The setDomainEnv Script
	 The commEnv Script
	 Resuming Execution of setDomainEnv
	 The setStartupEnv Script
	 The setUserOverrides Script
	 Completing Execution of setDomainEnv
	 Completing Execution of startWebLogic

	 Path, Classpath, and System Properties
	 Sample Configuration Values
	 Sample PATH Value
	 Sample CLASSPATH Value
	 How the CLASSPATH Is Built
	 Sample System Properties
	 Additional System Properties

	 Manual Startup
	 Server Instance Selection
	 Running the Command
	 Credentials

	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 6: Configuration Management
	 Java Management Extensions
	 Architecture
	 Configuration Management
	 Administration Console
	 Security
	 GUI Layout
	 Configuration Management Using the Administration Console

	 WebLogic Scripting Tool
	 Security
	 Executing Commands
	 WLST Commands
	 Configuration Management Using WLST

	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 7: Logging and Monitoring
	 Logging
	 Loggers and Handlers
	 Message Severity
	 Message Attributes
	 Available Log Files
	 Viewing Log Files
	 Configure Logging
	 Logging Filters

	 Monitoring
	 Server Health
	 Monitoring Dashboard

	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 8: Networking
	 Network Channels
	 Purpose
	 Configuration
	 Channel Types
	 Administration Port
	 Sample Use

	 Virtual Hosts
	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 9: Clusters - Basics
	 High Availability
	 Tiered Architectures
	 Cluster Architecture
	 Cluster Creation
	 Using the Administration Console
	 Using WebLogic Scripting Tool

	 Dynamic Clusters
	 Server Templates

	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 10: Clusters - Advanced
	 Enabling Technologies
	 TCP/IP
	 IP
	 TCP
	 Sockets
	 UDP
	 Multicast
	 Unicast
	 Application Layer

	 Cluster Communication
	 Health Status
	 JNDI Replication
	 Selecting Protocols
	 Choosing Multicast
	 Choosing Unicast
	 Replication Channels

	 Monitoring Clusters
	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 11: Clusters - Proxies
	 HTTP Sessions
	 Session Replication
	 Replication Groups
	 In-Memory Replication

	 Session Persistence
	 JDBC Persistence
	 File Persistence
	 Session Cache

	 Proxies
	 Hardware Proxies
	 Software Proxies
	 HTTPClusterServlet
	 Oracle HTTP Server
	 Apache HTTP Server

	 Deployment Architectures

	 Session Failover
	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 12: JDBC
	 Architecture
	 Data Sources
	 Configuration
	 Transactionality
	 Monitoring and Control
	 Debugging

	 Multi Data Sources
	 Active GridLink
	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 13: Transactions
	 Properties
	 Extended Architecture
	 Two-Phase Commit
	 Java Transaction API
	 WebLogic Server Transactions
	 Demarcation and Control
	 Configuration
	 Transaction Logs
	 Monitoring

	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 14: Application Deployment
	 Deployment Scenarios
	 Preparatory Phase
	 Storage Location
	 Storage Format
	 Configuration Plans

	 Deployment
	 Staging Mode
	 Distributing Applications
	 Starting and Stopping Applications

	 Redeployment
	 Undeployment
	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 15: Security
	 Concepts
	 Security Realms
	 Security Store

	 Security Providers
	 Authentication Provider
	 XACML Authorization Provider
	 Security Policies

	 Identity Assertion Provider
	 Credential Mapping Provider
	 XACML Role Mapping Provider
	 Adjudication Provider
	 CertPath Provider
	 Providers in Action

	 Custom Security Configuration
	 LDAP Integration

	 Recommended Exercises
	 Certification Questions
	 Coming Up

	Chapter 16: Backup and Upgrade
	 Backup and Recovery
	 Frequency
	 Integrity
	 Mode
	 Scope

	 WebLogic Server Backups
	 Managed Server Independence

	 Recovery
	 Upgrade
	 Recommended Exercises
	 Certification Questions

	Appendix A: Answers to Sample Questions
	 Overview
	 Installation and Updates
	 Domains
	 Node Manager
	 Servers
	 Configuration Management
	 Logging and Monitoring
	 Networking
	 Cluster Basics
	 Clusters Advanced
	 Clusters Proxies
	 JDBC
	 Transactions
	 Application Deployment
	 Security
	 Backup and Upgrade

	Index

